K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

+Xét 2 riêng trường hợp x = 0 và y = 0.

+Xét x, y đều khác 0

Hệ \(\Leftrightarrow\int^{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}}_{\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}}\Leftrightarrow\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\text{ }\&\text{ }2.\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)

\(\Rightarrow\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\right)\left(\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\right)=\frac{4}{\sqrt{x}}-\frac{1}{\sqrt{y}}\)

Đặt \(\sqrt{y}=t.\sqrt{x}\text{ }\left(t>0\right)\)

Suy ra: \(\frac{2+t}{1+t^2}=4-\frac{1}{t}\Leftrightarrow\left(2t-1\right)\left(2t^2+1\right)=0\Leftrightarrow t=\frac{1}{2}\)

\(\Rightarrow\sqrt{x}=2\sqrt{y}\)

Thay vào phương trình đầu của hệ ban đầu:

\(\sqrt{2\sqrt{y}}\left(\frac{1}{4}+\frac{5\sqrt{y}}{5y}\right)=2\Leftrightarrow\frac{1}{4}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{2\sqrt{y}}}\)

\(\Leftrightarrow\frac{1}{4}+2t^2=2t\text{ với }t=\frac{1}{\sqrt{2\sqrt{y}}}\)

Tới đây dễ rồi.

bài lớp mấy đấy khó quá

chết người hả, đề gì mà trừu tượng ghê ghớm vậy

2 tháng 4 2016

Sr!Khó thế này thì có trời mới làm được

1 tháng 11 2016

Ta có 

x + x2 + x3 + x4 = y + y2 + y3 + y4

<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0

<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]

<=> (x - y)(2 + 2x + 2y + xy)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)

Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp 

1 tháng 11 2016

1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)

\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)

PT này vô nghiệm vậy pt ban đầu vô nghiệm

7 tháng 5 2016

nhân (1) với 2 +căn3

nhân (2) với 2-căn3

7 tháng 5 2016

\(x=\frac{5\sqrt{3}-7}{2};y=-\frac{\sqrt{27}-1}{2}\)

\(\sqrt{x^2+x+1}=x+1\)

\(\Leftrightarrow\left(\sqrt{x^2+x+1}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+x+1=x^2+2x+1\)

\(\Leftrightarrow x=2x\)

\(\Leftrightarrow2x-x=0\)

\(\Leftrightarrow x=0\)

1. \(\sqrt{x^2+5x+20}=4\)

\(\Leftrightarrow\left(\sqrt{x^2+5x+20}\right)^2=4^2\)

\(\Leftrightarrow x^2+5x+20=16\)

\(\Leftrightarrow x^2+5x+20-16=0\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow x^2+4x+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-1\end{cases}}}\)

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

18 tháng 6 2017

1 .      \(\sqrt{x^4-2x^2+1}=x-1\)

<=>  \(\sqrt{\left(x^2-1\right)^2}=x-1\)

<=> \(x^2-1=x-1\)

<=> \(x^2-x=0\)(vậy pt vô nghiệm)

18 tháng 6 2017

1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)

<=>\(x^2-x=0\)

<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)

1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)

<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)

<=>x^2 = -0.39 vô lý  => vô nhiệm