K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

x={2;4}

22 tháng 2 2017

Câu này cách làm tương tự câu mũ 4 ở trên nhé, đặt ẩn phụ và biến đổi như vậy

17 tháng 4 2020

À thôi mik tự làm đc rồi ạ !

10 tháng 11 2019

Cho bạn kết quả phân tích thôi, tự phân tích nha:D

a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)

b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)

10 tháng 11 2019

Dạng này thì em : \(\frac{6+8}{2}=7\)

Đặt x  + 7 =t

=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)

<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)

<=> \(2t^4+12t^2+2=272\)

<=> \(t^4+6t^2-135=0\)

<=> \(t^4+6t^2+9=144\)

<=> \(\left(t^2+3\right)^2=12^2\)

<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)

Với t = 3  có: x + 7 = 3 <=> x =-4

Với t = -3 có: x +7 =-3 <=> x = -10

b) pt  \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)

Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)

Đặt: \(x-\frac{7}{2}=t\)

pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)

<=> .... 

Làm thử tiếp nha.

Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)

12 tháng 2 2020

Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.

Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)

\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)

thay \(a+b=2\) ta có:

\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)

\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)

\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)

\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)

Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)

\(\Leftrightarrow\)\(6x-8-x^2-4=0\)

\(\Leftrightarrow\)\(6x-12-x^2=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)

\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )

Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)

12 tháng 2 2020

Các bạn nhớ tick cho mk nha

22 tháng 7 2017

a) Đặt ẩn phụ y=x-2

12 tháng 4 2019

x=2 nhé

27 tháng 3 2020

Đặt \(2^x-8=u;4^x+13=v\)

Phương trình trở thành \(u^3+v^3=\left(u+v\right)^3\)

\(\Rightarrow u^3+v^3=u^3+3uv\left(u+v\right)+v^3\)

\(\Rightarrow3uv\left(u+v\right)=0\)

*) \(u=0\Rightarrow2^x-8=0\Rightarrow x=3\)

\(v=0\Rightarrow4^x=-13\)(không tồn tại nghiệm thực)

\(u+v=0\Rightarrow2^x+4^x=-5\)(không tồn tại nghiệm thực)

Vậy nghiệm duy nhất của phương trình là 3