Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
a) Đặt: \(\sqrt{x^2+1}=t\left(t\ge0\right)\), \(t^2=x^2+1\Rightarrow x^2-1=t^2-2\)
pt tương đương với \(\left(x^2-1\right)^2-12\sqrt{x^2+1}-13=0\)
=> \(\left(t^2-2\right)^2-12t-13=0\), rút gọn và phân tích pt này ta được: \(\left(t+1\right)\left(t-3\right)\left(t^2+2t+3\right)=0\)
Vì \(t^2+2t+3=\left(t+1\right)^2+2>0\left(\forall t\right)\) nên \(\left[{}\begin{matrix}t+1=0\\t-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
Với t = -1 thì 1 = x2 +1 <=> x=0
Với t = 3 thì 9 = x2 +1 <=> \(x=\pm2\sqrt{2}\)
Lần lượt thay các giá trị của x vừa tìm được vào pt ban đầu, nhận \(x=\pm2\sqrt{2}\) là nghiệm của pt
Vậy pt đã cho có 2 nghiêm là x =... ; x =...
b) Dùng PP chứng minh nghiệm duy nhất
x=9 là nghiệm của pt
Với x>9 thì VT > \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)
Với x<9 thì VT < \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)
Vậy...........
c) Vì \(\left|x-2y+1\right|\ge0\) và \(\left|3x+y-7\right|\ge0\) nên
\(\left\{{}\begin{matrix}x-2y+1=0\\3x+y-7=0\end{matrix}\right.\),hệ này cho x = \(\dfrac{13}{7}\), y = \(\dfrac{10}{7}\)
Vậy.....
Có vài chỗ mk làm gọn, mong bạn hiểu cho