Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Đề còn gì nữa không bạn chớ chỉ vầy thì biết bao nhiêu nghiệm mà kể
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
Lời giải:
\((x+\sqrt{x^2+2})(y-1+\sqrt{y^2-2y+3})=2(*)\)
Nhân 2 vế của $(*)$ với $x-\sqrt{x^2+2}$ thu được:
\([x^2-(x^2+2)](y-1+\sqrt{y^2-2y+3})=2(x-\sqrt{x^2+2})\)
\(\Leftrightarrow y-1+\sqrt{y^2-2y+3}=\sqrt{x^2+2}-x\)
\(\Leftrightarrow x+y-1=\sqrt{x^2+2}-\sqrt{y^2-2y+3}(1)\)
Nhân 2 vế của $(*)$ với $y-1-\sqrt{y^2-2y+3}$ thu được:
\((x+\sqrt{x^2+2})[(y-1)^2-(y^2-2y+3)]=2(y-1-\sqrt{y^2-2y+3})\)
\(\Leftrightarrow x+\sqrt{x^2+2}=\sqrt{y^2-2y+3}-(y-1)\)
\(\Leftrightarrow x+y-1=\sqrt{y^2-2y+3}-\sqrt{x^2+2}(2)\)
Lấy \((1)+(2)\Rightarrow 2(x+y-1)=0\Rightarrow x+y-1=0\)
\(\Rightarrow x+y=1\)
Khi đó:
\(x^3+y^3+3xy=(x+y)^3-3xy(x+y)+3xy\)
\(=1^3-3xy.1+3xy=1\) (đpcm)
Số 12 nhỏ phía sau không phải đâu các bạn nhé !