Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
ĐKXĐ \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Đặt \(\sqrt{2x^2-1}=t\ge0\)
<=> \(\left(3x+1\right)t=2t^2+x^2+\frac{3}{2}x-1\)
<=> \(2t^2-\left(3x+1\right)t+x^2+\frac{3}{2}x-1=0\)
\(\Delta_t=\left(x-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{2x-1}{2}\\t=\frac{x+2}{2}\end{cases}}\)
Phần còn lại bạn tự giải nhé
Cách khác, bình phương cũng ra nhé
Điều kiện tự làm nhé:
Đặt \(\sqrt{2x-1}=t\)
\(\Leftrightarrow\left(3x+1\right)\sqrt{2x^2-1}=2\left(2x^2-1\right)+x^2+\frac{3x}{2}-1\)
\(\Leftrightarrow\left(3x+1\right)t=2t^2+\frac{3x}{2}-1+x^2\)
\(\Leftrightarrow-4t^2+6tx+2t-2x^2-3x+2=0\)
\(\Leftrightarrow\left(2t-x-2\right)\left(2x-2t-1\right)=0\)
Tới đây thì đơn giản rồi nhé