K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)

Đặt \(\sqrt{2x^2-1}=t\ge0\)

<=> \(\left(3x+1\right)t=2t^2+x^2+\frac{3}{2}x-1\)

<=> \(2t^2-\left(3x+1\right)t+x^2+\frac{3}{2}x-1=0\)

\(\Delta_t=\left(x-3\right)^2\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{2x-1}{2}\\t=\frac{x+2}{2}\end{cases}}\)

Phần còn lại bạn tự giải nhé

Cách khác, bình phương cũng ra nhé

1 tháng 8 2019

Em giải cho chị bên h o c 2 4 rồi mà?

Link: Câu hỏi của Phạm Thị Thùy Linh (không biết admin đã fix lỗi ko dán link h o c 2 4 vào chưa, nếu chưa thì ib, em gửi full link)

25 tháng 7 2019

Em thử liên hợp nhé;) không thì bình phương lên cho ra phương trình bậc 4 rồi mò cũng được:P

ĐK: \(x\le-\frac{\sqrt{2}}{2}\text{hoặc }x\ge\frac{\sqrt{2}}{2}\)

PT \(\Leftrightarrow10x^2+3x-6=\left(3x+1\right).2\sqrt{2x^2-1}\) (nhân hai vế với 2)

Bớt cả hai vế của pt cho \(3x^2+7x+2\) , pt trở thành:

\(7x^2-4x-8=\left(3x+1\right).2\sqrt{2x^2-1}-\left(3x^2+7x+2\right)\)

\(\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\sqrt{8x^2-4}-\left(3x+1\right)\left(x+2\right)\)

\(\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\left[\sqrt{8x^2-4}-\left(x+2\right)\right]\)

Nhân liên hợp ta có:

\(PT\Leftrightarrow7x^2-4x-8=\left(3x+1\right)\left[\frac{7x^2-4x-8}{\sqrt{8x^2-4}+x+2}\right]\)

\(\Leftrightarrow\left(7x^2-4x-8\right)\left[\frac{\left(3x+1\right)}{\sqrt{8x^2-4}+x+2}-1\right]=0\)

Giải cái ngoặc nhỏ được \(\left[{}\begin{matrix}x=\frac{2+2\sqrt{15}}{7}\left(TM\right)\\x=\frac{2-2\sqrt{15}}{7}\left(TM\right)\end{matrix}\right.\)

Giải cái ngoặc to \(\Leftrightarrow3x+1=\sqrt{8x^2-4}+x+2\Leftrightarrow2x-1=\sqrt{8x^2-4}\)

Do VP >=0 nên VT >=0 do đó \(x\ge\frac{1}{2}\) . Bình phương hai vế, pt

\(\Leftrightarrow4x^2-4x+1=8x^2-4\)

\(\Leftrightarrow4x^2+4x-5=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{6}}{2}\left(TM\right)\\x=\frac{-1-\sqrt{6}}{2}\left(KTM\right)\end{matrix}\right.\)

Vậy...

27 tháng 1 2017

Điều kiện tự làm nhé:

Đặt \(\sqrt{2x-1}=t\)

\(\Leftrightarrow\left(3x+1\right)\sqrt{2x^2-1}=2\left(2x^2-1\right)+x^2+\frac{3x}{2}-1\)

\(\Leftrightarrow\left(3x+1\right)t=2t^2+\frac{3x}{2}-1+x^2\)

\(\Leftrightarrow-4t^2+6tx+2t-2x^2-3x+2=0\)

\(\Leftrightarrow\left(2t-x-2\right)\left(2x-2t-1\right)=0\)

  Tới đây thì đơn giản rồi nhé

15 tháng 10 2019

dk \(x\ge0;2x+1\ge0< =>x\ge0\)

2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)

\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>

2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc

\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)

x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\)   hay 5x- 3<2 <=> x<1( vô lý)

x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)

x=1 thỏa mãn

vậy pt có nghiệm duy nhất x=1

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@