K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

1) \(\sqrt{x^2-x}=x\)

\(\Leftrightarrow x^2+x=x^2\)

\(\Leftrightarrow x^2+x-x^2=0\)

\(\Leftrightarrow x=0\)

Vậy: \(x=0\)

2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))

\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-x^2=x^2-2x+1\)

\(\Leftrightarrow-x^2-x^2-2x=1-1\)

\(\Leftrightarrow-2x^2-2x=0\)

\(\Leftrightarrow-2x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-1\right\}\)

1: =>x^2+x=x^2 và x>=0

=>x=0

2: =>1-x^2=x^2-2x+1 và x>=1

=>x^2-2x+1-1+x^2>=0 và x>=1

=>2x^2-2x=0 và x>=1

=>x=1

26 tháng 8 2018

1,

\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)

\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)

\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)

\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)

\(=\frac{2\sqrt{h-1}}{h-2}\)

Thay \(h=3\)vào D ta có:

\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)

Vậy với \(h=3\)thì \(D=2\sqrt{2}\)

2,

a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)

Vậy PT có nghiệm là \(x=2\)

b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)

\(\Leftrightarrow0=-3\)(vô lí)

Vậy PT đã cho vô nghiệm.

21 tháng 7 2017

Điều kiện xác định bạn tự tìm

a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý

pt vô nghiệm

b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)

<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)

c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)

<=>x=2 còn cái kia vô nghiệm

bạn tự trình bày chi tiết nhé

20 tháng 7 2017

a) bình phương -> rút gọn-> giải nghiệm

b,c) chuyển những phần tử không có căn sang vế phải->bình phương->rút gọn->tìm nghiệm

1 tháng 11 2020

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)

Vì \(\sqrt{x^2+x-1}\ge0\)

\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)

Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)

Cộng (1) và (2) ta có: 

\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x\ge x^2-x+2\)

\(\Leftrightarrow x^2-x+2-1-x\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)

Vì \(\left(x-1\right)^2\ge0\forall x\)(4)

Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ

Vậy \(x=1\)

1 tháng 11 2020

\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)

\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)

\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)

\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)

\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )

phân tích thành hằng đẳng thức (a-b)2

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

29 tháng 9 2018

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\) Đkxđ : x khác 1 ; x khác -1 

\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{2-x\left(x+1\right)+x-1}{x^2-1}\)

\(A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{x^2-1}{2-x^2-1+x-1}\)

\(A=\frac{4x}{-x^2+x}=\frac{4x}{x\left(1-x\right)}\)

\(A=\frac{4}{1-x}\)

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................