Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(x^2+6x+5=t\) ta có:
\(t\left(t+3\right)-40=0\)
\(\Leftrightarrow\)\(t^2+3t-40=0\)
\(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)
(*) \(x^2+6x=0\)
\(\Leftrightarrow\)\(x\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
(*) \(x^2+6x+13=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\) (vô lý)
Vậy......
a, x^2 - x - 20 = 0
=> x^2 - 5x + 4x - 20 = 0
=> x(x - 5) + 4(x - 5) = 0
=> (x + 4)(x - 5) = 0
=> x + 4 = 0 hoặc x - 5 = 0
=> x = -4 hoặc x = 5
b, x^3 - 6x^2 + 12x + 19 = 0
=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0
=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0
=> (x^2 - 7x + 19)(x + 1) = 0
x^2 - 7x + 19 > 0
=> x + 1 = 0
=> x = -1
\(a,x^2-x-20=0\)
\(x^2-5x+4x-20=0\)
\(\left(x-5\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
\(b,x^3-6x^2+12x+19=0\)
\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\left(x+1\right)\left(x^2-7x+19\right)=0\)
Vì \(\left(x^2-7x+19\right)>0\forall x\)
\(x+1=0\)
\(x=-1\)
\(x^3-6x^2+11x-12=0\Leftrightarrow x^3-4x^2-2x^2+8x+3x-12=0\)
\(\Leftrightarrow x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x^2-2x+3\right)=0\)
<=> x-4=0 hoặc x2-2x+3=0
. Mà \(x^2-2x+3=\left(x-1\right)^2+2\ge2>0\) nên x2-2x+3\(\ne\)0 => x-4=0 <=>x=4
Vậy pt có nghiệm x=4
Mode setup-->5-->4-->1--->=--->-6--->=--->11---->=---->-12--->=--->= là bằng 4(casio calculator)
6x2-x-40=0
<=> 6x2+15x -16x -40
<=>6x(x+2.5) -16(x+40)
<=> (6x-16)(x+40)
<=>2(3x-8)(x+40)
\(6x^2-x-40=0\)
\(\Leftrightarrow6x^2+15x-16x-40=0\)
\(\Leftrightarrow\left(6x^2+15x\right)-\left(16x+40\right)=0\)
\(\Leftrightarrow3x\times\left(2x+5\right)-8\times\left(2x+5\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-8=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=8\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=\frac{-5}{2}\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{8}{3};\frac{-5}{2}\right\}\)