K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

6x2-x-40=0

<=> 6x2+15x -16x -40

<=>6x(x+2.5) -16(x+40) 

<=> (6x-16)(x+40)

<=>2(3x-8)(x+40)

1 tháng 4 2018

\(6x^2-x-40=0\)

\(\Leftrightarrow6x^2+15x-16x-40=0\)

\(\Leftrightarrow\left(6x^2+15x\right)-\left(16x+40\right)=0\)

\(\Leftrightarrow3x\times\left(2x+5\right)-8\times\left(2x+5\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-8=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=8\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=\frac{-5}{2}\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{8}{3};\frac{-5}{2}\right\}\)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

6 tháng 2 2018

c)   \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

Đặt      \(x^2+6x+5=t\)   ta có:

                       \(t\left(t+3\right)-40=0\)

          \(\Leftrightarrow\)\(t^2+3t-40=0\)

          \(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)

        \(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)

Thay trở lại ta có:      \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)

(*)     \(x^2+6x=0\)

 \(\Leftrightarrow\)\(x\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

(*)   \(x^2+6x+13=0\)

\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\)  (vô lý)

Vậy......

17 tháng 4 2019

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x^2-x+4=0\)

Mà \(x^2-x+4=\left(x-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x=1\left(h\right)x=-2\)

16 tháng 3 2017

Sory sor mình không giải cặn cẽ dc

X = 1

Nhớ k đúng

16 tháng 3 2017

k đúng

19 tháng 2 2020

a, x^2 - x - 20 = 0

=> x^2 - 5x + 4x - 20 = 0

=> x(x - 5) + 4(x - 5) = 0

=> (x + 4)(x - 5) = 0

=> x + 4 = 0 hoặc x - 5 = 0

=> x = -4 hoặc x = 5

b, x^3 - 6x^2 + 12x + 19 = 0

=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0

=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0

=> (x^2 - 7x + 19)(x + 1) = 0

x^2 - 7x + 19 > 0

=> x + 1 = 0

=> x = -1

19 tháng 2 2020

\(a,x^2-x-20=0\)

\(x^2-5x+4x-20=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)

\(b,x^3-6x^2+12x+19=0\)

\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\left(x+1\right)\left(x^2-7x+19\right)=0\)

Vì \(\left(x^2-7x+19\right)>0\forall x\)

\(x+1=0\)

\(x=-1\)

9 tháng 5 2017

Bài này k có nghiệm nka bạn

1 tháng 3 2019

Phương trình này không có nghiệm là x = 1 nha bạn

26 tháng 4 2017

\(x^3-6x^2+11x-12=0\Leftrightarrow x^3-4x^2-2x^2+8x+3x-12=0\)

\(\Leftrightarrow x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x^2-2x+3\right)=0\)

<=> x-4=0 hoặc x2-2x+3=0

. Mà  \(x^2-2x+3=\left(x-1\right)^2+2\ge2>0\) nên x2-2x+3\(\ne\)0  => x-4=0 <=>x=4

Vậy pt có nghiệm x=4

26 tháng 4 2017

Mode setup-->5-->4-->1--->=--->-6--->=--->11---->=---->-12--->=--->= là bằng 4(casio calculator)