Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-xy+y^2=3\)
\(\Leftrightarrow\)\(x^2-xy+y^2-3=0\)
Để phương trình có nghiệm thì:
\(\Delta=y^2-4\left(y^2-3\right)\ge0\)
\(\Leftrightarrow\)\(y^2-4y^2+12\ge0\)
\(\Leftrightarrow\)\(-3y^2\ge-12\)
\(\Leftrightarrow\)\(y^2\le4\)
\(\Rightarrow\)\(y=\left\{0;\pm1;\pm2\right\}\)
đến đây tự lm tiếp nhé, thay y vào pt ban đầu rồi giải tìm x là xog
Ap dung BDT Bunhiacopxki , ta co :
( x2 + y2)2 = ( \(\sqrt{x^4}+\sqrt{y^4}\))2 = \(\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)\)2 ≤ ( x+y)( x3 + y3) = 2(x+ y)
⇔ ( x2 + y2)2 ≤ 2( x + y)
⇔ ( x2 + y2)4 ≤ 4( x + y)2 ≤ 4( x2 + y2)( 12 + 12) = 8( x2 + y2)
⇔ ( x2 + y2)4 ≤ 8( x2 + y2)
⇔ ( x2 + y2)3 ≤ 8
⇔ x2 + y2 ≤ 2
Dau " =" xay ra khi : x = y = 1
P/s : Mk lam thu thui nha , khong chac dau
Đời về bản là buồn... cười!!!Phùng Khánh LinhHong Ra Onchú tuổi gìNguyễn Ngô Minh TríNhã Doanh,.....
Mk can gap gap , mai thi hoc ky 2 rui nhen
ta có pt
<=>\(\left(x+1\right)^2\left(x-2+x+2\right)=-24\Leftrightarrow2x\left(x+1\right)^2=-24\Leftrightarrow x\left(x^2+2x+1\right)=-12\)
<=>\(x^3+2x^2+x+12=0\Leftrightarrow x^3+3x^2-x^2-3x+4x+12=0\Leftrightarrow\left(x+3\right)\left(x^2-x+4\right)=0\)
đến đây thì dễ rồi nhé ^_^
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
Lời giải:
\((x^3-x^2)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2(x-1)-4(x^2-2x+1)=0\)
\(\Leftrightarrow x^2(x-1)-4(x-1)^2=0\)
\(\Leftrightarrow (x-1)[x^2-4(x-1)]=0\)
\(\Leftrightarrow (x-1)(x^2-4x+4)=0\)
\(\Leftrightarrow (x-1)(x-2)^2=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ x=2\end{matrix}\right.\)
\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(\Leftrightarrow x\left(x^3+1\right)-x\left(x^3-1\right)=3\)
=>2x=3
hay x=3/2