Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Đk : \(2x^2-6x-1\ge0\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3-\sqrt{11}}{2}\\x\ge\frac{3+\sqrt{11}}{2}\end{matrix}\right.\)
Bình phương 2 vế của phương trình, ta có :
\(4x^4+36x^2+1-24x^3-4x^2+12x-4x-5=0\)
\(\Leftrightarrow4x^4-24x^3+32x^2+8x-4=0\)
\(\left[{}\begin{matrix}x=1-\sqrt{2}\left(TM\right)\\x=2-\sqrt{3}\left(l\right)\\x=\sqrt{2}+1\left(l\right)\\x=\sqrt{3}+2\left(TM\right)\end{matrix}\right.\)
Vậy ....
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
\(\Leftrightarrow3x-5+\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+1\right]=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-3=\sqrt[3]{3x-5}\)
\(\Leftrightarrow\left(2x-3\right)^3=3x-5\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Áp dụng BĐT AM - GM cho các số dương ta có :
\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)
\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)
\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)
\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=1\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)
dat \(\left(x-1\right)\left(x+1\right)=y\)
\(4y-3x=\sqrt[3]{x^2y}\)
\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)
\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)
\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)
de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)
\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
câu b tương tự nhé bạn
đặt \(\sqrt{3x+1}=a\)
=> pt <=> 4x^2 +a +6=a^2 +12x
chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3
câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp
sau khi chuyển cậu có pt a62-4x^2-a+12x-6=0
=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0
<=> (a+2x-3)(a-2x+2)=0