Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)
dat \(\left(x-1\right)\left(x+1\right)=y\)
\(4y-3x=\sqrt[3]{x^2y}\)
\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)
\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)
\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)
de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)
\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
câu b tương tự nhé bạn
\(ĐKXĐ:x\ge-\frac{2}{3}\)
Ta có : \(4x^2+6x+1=4\sqrt{6x+4}\)
\(\Leftrightarrow4x^2+6x+1+6x+4+4=6x+4+4\sqrt{6x+4}+4\)
\(\Leftrightarrow4x^2+12x+9=\left(\sqrt{6x+4}\right)^2+2.\sqrt{6x+4}.2+2^2\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\sqrt{6x+4}+2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=\sqrt{6x+4}+2\left(1\right)\\2x+3=-\sqrt{6x+4}-2\left(2\right)\end{cases}}\)
+) Pt (1) \(\Leftrightarrow\sqrt{6x+4}=2x+1\)
\(\Leftrightarrow\hept{\begin{cases}5x+4=4x^2+4x+1\\x\ge-\frac{1}{2}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(4x+3\right)=0\\x\ge-\frac{1}{2}\end{cases}}\) \(\Leftrightarrow x=1\) ( Thỏa mãn )
+) Pt (2) \(\Leftrightarrow\sqrt{6x+4}=-2x-5\)
\(\Leftrightarrow\hept{\begin{cases}6x+4=\left(-2x-5\right)^2\\x\le-\frac{5}{2}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}6x+4=4x^2+25+20x\\x\le-\frac{5}{2}\end{cases}}\) ( Vô nghiệm )
Vậy phương trình đã cho có nghiệm duy nhất \(x=1\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
am-gm cái VT(đánh giá từ TBN sang TBC)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Áp dụng BĐT AM - GM cho các số dương ta có :
\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)
\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)
\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)
\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=1\)