K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

                                             Bài giải

\(x^3-5x^2+x+5=0\)

\(x^2\left(x-5\right)+\left(x-5\right)+10=0\)

\(\left(x^2+1\right)\left(x-5\right)=-10\)

\(\Rightarrow\text{ }\left(x^2+1\right)\text{ , }\left(x-5\right)\inƯ\left(-10\right)\)

Đến đây bạn lập bảng là được !

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

30 tháng 11 2019

cục sì lầu bà tân vlog

30 tháng 11 2019

nà ní???

25 tháng 5 2019

1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)

ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)

Kết hơp với ĐKXĐ=> \(4\le x\le5\)

Khi đó Phương trình tương đương

\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)

<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)

=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0

\(x^2-7x+11=0\)

Với \(4\le x\le5\)

\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)

25 tháng 5 2019

2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)

<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)

<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)

<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)

=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0

\(S=\left\{2;-1\right\}\)

22 tháng 5 2019

Bình phương 2 vế

Rút gọn các hệ số => phương trình bậc 4

Đặt ẩn \(t=x^2\)

Giải hệ => ra 4 nghiệm

16 tháng 5 2015

ĐK:x≥-3/2

Phương trình biến đổi như sau:

        x^3 +6x^2+5x+3 - \(\left(2x+5\right)\sqrt{2x+3}\)

<=> x^3+4x^2+5x-3 - \(\left(2x+5\right)\left(x+1\right)-\left(2x+5\right)\sqrt{2x+3}-x-1=0\)

<=> \(\left(x^2-2\right)\left(x+4+\frac{2x+5}{x+1+\sqrt{2x+3}}\right)=0\)

Ta thấy: x \(\ge-\frac{3}{2}\) thì x+4+ \(\frac{2x+5}{x+1+\sqrt{2x+3}}\ge0\)

=> x^ 2 -2 = 0 => x^ 2 = 2 => x= \(\sqrt{2}hoặc-\sqrt{2}\)

thử lại x= \(-\sqrt{2}\) loại

vậy x= \(\sqrt{2}\)