K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LN
0
LN
0
NV
0
TT
0
N
4
DT
4
I
4 tháng 4 2020
\(ĐK:x\ge\frac{1}{2}\)
Biến đổi phương trình đã cho thành
\(\left(x-2\right)\left[3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\3x\left(\sqrt{2x-1}+1\right)-\left(2x^2-x+2\right)=0\left(1\right)\end{cases}}\)
Giải PT
\(\left(1\right)\Leftrightarrow3x\left(\sqrt{2x-1}+1\right)-x\left(2x-1\right)-2=0\left(2\right)\)
đặt \(\sqrt{2x-1}=t\left(zới\right)t\ge0=>x=\frac{t^2+1}{t}\)thay zô PT (2) ta đc
\(t^4-3t^3-2t^2-3t+1=0\Leftrightarrow\left(t^2+t+1\right)\left(t^2-4t+1\right)=0\Leftrightarrow t^2-4t+1=0\Leftrightarrow t=2\pm\sqrt{3}\)
từ đó tìm đc
\(x=4\pm2\sqrt{3}\left(tm\right)\)
ĐK:x≥-3/2
Phương trình biến đổi như sau:
x^3 +6x^2+5x+3 - \(\left(2x+5\right)\sqrt{2x+3}\)
<=> x^3+4x^2+5x-3 - \(\left(2x+5\right)\left(x+1\right)-\left(2x+5\right)\sqrt{2x+3}-x-1=0\)
<=> \(\left(x^2-2\right)\left(x+4+\frac{2x+5}{x+1+\sqrt{2x+3}}\right)=0\)
Ta thấy: x \(\ge-\frac{3}{2}\) thì x+4+ \(\frac{2x+5}{x+1+\sqrt{2x+3}}\ge0\)
=> x^ 2 -2 = 0 => x^ 2 = 2 => x= \(\sqrt{2}hoặc-\sqrt{2}\)
thử lại x= \(-\sqrt{2}\) loại
vậy x= \(\sqrt{2}\)