K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

bình phương lên đi bạn

9 tháng 8 2019

ĐK:  x >= -1

Bình phương hai vế ta có:

\(x+1+2\sqrt{\left(x+1\right)\left(x+10\right)}+x+10=x+2+2\sqrt{\left(x+2\right)\left(x+5\right)}+x+5\)

Rút gọn

\(2x+11+2\sqrt{\left(x+1\right)\left(x+10\right)}=2x+7+2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(4+2\sqrt{\left(x+1\right)\left(x+10\right)}=2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(2+\sqrt{\left(x+1\right)\left(x+10\right)}=\sqrt{\left(x+2\right)\left(x+5\right)}\)

Bình phương hai vế 

\(4+4\sqrt{x^2+11x+10}+x^2+11x+10=x^2+7x+10\)

\(\Leftrightarrow4\sqrt{x^2+11x+10}+4x+4=0\)

\(\Leftrightarrow\sqrt{x^2+11x+10}+x+1=0\)  ( đến đây bạn có thể chuyển x+1 sang vế khác đặt điều kiện rồi bình phương hai vế cũng có thể làm theo cách dưới như của mình)

Mà \(x\ge-1\)

khi đó: \(\sqrt{x^2+11x+10}+x+1\ge0\)

Dấu "=" xảy ra <=> x=-1 thỏa mãn

Vậy x=-1

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Xem tại đây

Câu hỏi của socola - Toán lớp 9 | Học trực tuyến

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

10 tháng 9 2018

x= rỗng

11 tháng 9 2018

\(\sqrt{x-2}+\sqrt{x-7}=\sqrt{x-10}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x-2}-3\right)+\left(\sqrt{x-7}-2\right)+\left(1-\sqrt{x-10}\right)+\left(4-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\frac{x-11}{\sqrt{x-2}+3}+\frac{x-11}{\sqrt{x-7}+2}-\frac{x-11}{\sqrt{x-10}+1}-\frac{x-11}{\sqrt{x+5}+4}=0\)

\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{\sqrt{x-2}+3}+\frac{1}{\sqrt{x-7}+2}-\frac{1}{\sqrt{x-10}+1}-\frac{1}{\sqrt{x+5}+4}\right)=0\)

\(\Leftrightarrow x=11\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

13 tháng 10 2015

ĐKXĐ:  \(x\ge10\).  Đặt \(\sqrt{x-2}=a\ge0;\sqrt{x-7}=b\ge0;\sqrt{x+5}=c\ge0;\sqrt{x-10}=d\ge0\).Ta thấy:

(x - 2) - (x - 7) = 5 ; (x + 5) - (x - 10) = 15 do đó ta có:  \(3\left(a^2-b^2\right)=c^2-d^2\)mà a + b = c + d. Suy ra:

\(3\left(a-b\right)\left(a+b\right)-\left(c-d\right)\left(c+d\right)=0\Leftrightarrow3\left(a+b\right)\left(3a-3b-c+d\right)=0\)

Nếu a + b = 0 thì x đồng thời bằng 2 và bằng 7 nên vô lí.

Nếu 3a - 3b - c + d = 0 => 3a - 3b = c - d (1) mà a + b = c + d (2). Trừ từng vế của (1) và (2) ta có: 2a - 4b = -2d <=> d + a = 2b 

\(\Leftrightarrow\sqrt{x-10}+\sqrt{x-2}=2\sqrt{x-7}\Leftrightarrow2x-12+2\sqrt{\left(x-10\right)\left(x-2\right)}=4x-28\)

\(\Leftrightarrow x-8=\sqrt{x^2-12x+20}\Leftrightarrow x^2-16x+64=x^2-12x+20\Leftrightarrow x=11\) (thỏa mãn) 

Vậy x = 11   

\(a,\sqrt{x-1-2\sqrt{x-2}}=1\)

\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\)

\(\Leftrightarrow\left(\sqrt{\left(\sqrt{x-2}-1\right)^2}\right)^2=1^2\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2=1\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=2^2\\\left(\sqrt{x-2}\right)=0^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=4\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}}\)

19 tháng 12 2021

a) \(\sqrt{x-1-2\sqrt{x-2}}\)=1

\(\sqrt{x-2-2\sqrt{x-2}+1}\)=1

\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\)=1

⇔(\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\))2=12

⇔(\(\sqrt{x-2}\)-1)2=1

\(\left\{{}\begin{matrix}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2=4\\x-2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

      Vậy phương trình có 2 nghiệm là x=6; x=2

b) \(\sqrt{x+\sqrt{x+5}}\)+\(\sqrt{x-\sqrt{x+5}}\)=2\(\sqrt{2}\)    ( đk: x≥-5)

⇔ x+\(\sqrt{x^2-x-5}\)=4

\(\sqrt{x^2-x-5}\)=4-x  

⇔(\(\sqrt{x^2-x-5}\))2= ( 4-x)2

⇔x2-x-5= 16-8x+x2

⇔x2-x+8x-x2=16+5

⇔ 7x=21

⇔x=3 ( thỏa mãn điều kiện xác định) 

18 tháng 2 2017

\(pt\Leftrightarrow\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)

Thấy rằng \(5-2\sqrt{6}\) là nghịch đảo của \(5+2\sqrt{6}\), Vì vậy 

\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=1\)

Đặt \(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}=t\) ta dc pt sau 

\(t+\frac{1}{t}=10\Rightarrow t^2-10t+1=0\Rightarrow t=5\pm2\sqrt{6}\)

Vì vậy \(t=5\pm2\sqrt{6}=\left(5-2\sqrt{6}\right)^{\pm1}=\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\)

Suy ra \(\frac{x}{2}=\pm1\Rightarrow x=\pm2\) 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)