K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

(Vậy chắc còn cách "làm liều" thôi. Chứ pt bậc 3 nghiệm vô tỉ đã học đâu?)

Xét trường hợp \(x=\sqrt{3}\) và \(x=-\sqrt{3}\) thấy chúng ko là nghiệm pt.

Xét trường hợp \(\hept{\begin{cases}x\ne\sqrt{3}\\x\ne-\sqrt{3}\end{cases}}\). Do 2 vế dương nên \(x>0\).

Kiểm tra thấy \(x=t=\frac{\sqrt[3]{10}-1}{\sqrt{3}}\) là nghiệm (cái này bạn thế vào rồi tính toán thôi)

Ta sẽ CM pt không còn nghiệm khác \(t\).

Giả sử \(x< t\). Khi đó \(\sqrt{\sqrt{3}-x}>\sqrt{\sqrt{3}-t}\) còn \(x\sqrt{\sqrt{3}+x}< t\sqrt{\sqrt{3}+t}\) nên vô lí

(Nhớ rằng \(\sqrt{\sqrt{3}-t}=t\sqrt{\sqrt{3}+t}\) do \(t\) là nghiệm pt)

Giả sử \(x>t\) tương tự suy ra vô lí.

Vậy pt có nghiệm duy nhất \(x=t\) với \(t\) là phân số trên.

20 tháng 12 2016

Bạn xem lại đề nha bạn. Pt trên có nghiệm duy nhất \(x=\frac{\sqrt[3]{10}-1}{\sqrt{3}}\) nên mình nghi là đề sai ở đâu đó.

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

16 tháng 8 2016

pt đã cho \(\Leftrightarrow\sqrt{3}-x=x^2\left(\sqrt{3}+x\right)\Leftrightarrow x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
\(\Leftrightarrow x^3+\frac{3.\sqrt{3}}{3}.x^2+3.\left(\frac{\sqrt{3}}{3}\right)x+\frac{\sqrt{3}}{9}=\frac{10\sqrt{3}}{9}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{3}}{3}\right)^3=\frac{10\sqrt{3}}{9}\Rightarrow x+\frac{\sqrt{3}}{3}=\sqrt[3]{\frac{10\sqrt{3}}{9}}\Rightarrow x=\sqrt[3]{\frac{10\sqrt{3}}{9}}-\frac{\sqrt{3}}{3}\)

12 tháng 9 2016

sao lại = 10 căn 3 /3 hả bạn , giảng cho mik

12 tháng 10 2019

điệu kiện \(\hept{\begin{cases}x\ge0\\2-x\ge0;3-x\ge0;5-x\ge0\end{cases}< =>0\le x\le2;}\)

ta có 2x = \(2\sqrt{2-x}\sqrt{3-x}+2\sqrt{3-x}\sqrt{5-x}+2\sqrt{5-x}\sqrt{2-x}\)

<=> 2x = \(\sqrt{2-x}\left(\sqrt{3-x}+\sqrt{5-x}\right)+\sqrt{3-x}\left(\sqrt{5-x}+\sqrt{2-x}\right)\)+\(\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)\)

<=> 2x = \(\sqrt{2-x}\left(x-\sqrt{2-x}\right)+\sqrt{3-x}\left(x-\sqrt{3-x}\right)+\sqrt{5-x}\left(x-\sqrt{5-x}\right)\)

<=> 2x = x (\(\sqrt{2-x}+\sqrt{3-x}+\sqrt{5-x}\)) - (2-x +3-x + 5-x) 

<=> 2x= x.x - 10 +3x <=> x2+x-10 = 0 <=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{41}}{2}\left(loai\right)\\x=\frac{-1-\sqrt{41}}{2}\left(loai\right)\end{cases}}\) cả 2 nghiệm đều không thỏa mãn \(0\le x\le2\)

=> phương trình vô nghiệm

29 tháng 2 2020

ĐK: \(x\le2\)

pt <=> \(2=2-x+\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}.\)

<=> \(2=\sqrt{2-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right).\)

<=> \(2=\left(\sqrt{2-x}+\sqrt{3-x}\right)\left(\sqrt{5-x}+\sqrt{2-x}\right).\)

<=> \(2\left(\sqrt{5-x}-\sqrt{2-x}\right)=3\left(\sqrt{2-x}+\sqrt{3-x}\right)\)( vì \(\sqrt{5-x}-\sqrt{2-x}\ne0;\forall x\inℝ\))

<=> \(2\sqrt{5-x}=5\sqrt{2-x}+3\sqrt{3-x}\)

<=> \(4\left(5-x\right)=25\left(2-x\right)+9\left(3-x\right)+30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(-57+30x=30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(\hept{\begin{cases}30x-57\ge0\\900x^2-3420x+3249=900x^2-4500x+5400\end{cases}}\)

<=> \(\hept{\begin{cases}x\ge\frac{57}{30}\\x=\frac{239}{120}\end{cases}}\Leftrightarrow x=\frac{239}{120}\)tmđk