Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta viết lại phương trình thành:
\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)
Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:
\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\)
Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)
Trường hợp 1: \(a=b\) ta có:
\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)
Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)
\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)
Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)
đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)
rồi thay vào và ptđttnt
ĐK: \(1\le x\le7\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)
Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)
\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)
TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)
TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)
Vậy pt có 2 nghiệm x = 4 hoặc x = 5.
\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)
- Với \(a=2\Rightarrow x=5\)
- Với \(a=b\Rightarrow x=2\)
cái thứ 1 nhân liên hợp đi
sau đó nhân chéo lên vs vế phải
rồi rút gọn
bình lên
giải pt là đc
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)
\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)
Pt trong ngoặc VN suy ra x=2
a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)
\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)
pt trong căn vô nghiệm
suy ra x=1; x=-1
cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé
Ta có: \(8x^3+2x=\sqrt[3]{x+7}+x+7\)
Đặt \(\sqrt[3]{x+7}=t\)
\(\Rightarrow8x^3+2x=t+t^3\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2\right)+\left(2x-t\right)=0\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=t\\4x^2+2xt+t^2+1=0\end{matrix}\right.\)
Với 2x=t \(\Leftrightarrow2x=\sqrt[3]{x+7}\Leftrightarrow8x^3-x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+8x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\8x^2+8x+7=0\left(loại\right)\end{matrix}\right.\)
Với \(4x^2+2xt+t^2+1=0\)
Do \(4x^2+2xt+t^2+1=\left(x+t\right)^2+3x^2+1\ge1>0\)
⇒ ptvn