K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

\(x^3+1=x\left(x+1\right)\)

\(\Leftrightarrow x^3+1-x\left(x+1\right)=0\)

\(\Leftrightarrow x^3+1-x^2-x=0\)

\(\Leftrightarrow x^3-x^2-x+1\)

\(\Leftrightarrow x^2.\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\pm1\end{cases}}}\)

Vậy x = {1;-1}

10 tháng 6 2018

\(x^3+1=x\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=x\left(x+1\right)\)    
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(x=-1\)

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

21 tháng 3 2017

 AI ĐÓ VÍT DÙM BÀI VĂN TẢ ÔNG CHO TRIỆU !!!!!!!!!!! 

5 tháng 7 2017

1) vô số nghiệm

2) \(\left|x-3\right|=-x\)

với x \(\le\) 0 thì phương trình có dạng:

\(\orbr{\begin{cases}x-3=-x\\x-3=x\end{cases}\Rightarrow\orbr{\begin{cases}2x=3\\0x=3\end{cases}\Rightarrow}x=\frac{3}{2}}\)(loại)

vậy phương trình vô nghiệm

3) \(\left|x\right|=1-x\)

khi x<1 thì phương trình có dạng:

\(\orbr{\begin{cases}x=x-1\\x=1-x\end{cases}\Rightarrow\orbr{\begin{cases}0x=-1\\2x=1\end{cases}\Rightarrow}x=\frac{1}{2}}\)(nhận)

vậy x=1/2 thỏa mãn phương trình

4 tháng 2 2016

em mới lớp 6 ạ

24 tháng 3 2017

a/ 4x + 20 = 0

⇔4x = -20

⇔x = -5

Vậy phương trình có tập nghiệm S = {-5}

b/ 2x – 3 = 3(x – 1) + x + 2

⇔ 2x-3 = 3x -3+x+2

⇔2x – 3x = -3+2+3

⇔-2x = 2

⇔x = -1

Vậy phương trình có tập nghiệm S = {-1}
 

24 tháng 3 2017

câu tiếp theo

a/ (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0

  • 3x – 2 = 0 => x = 3/2
  • 4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S= {-5/4,3/2}

b/ 2x(x – 3) – 5(x – 3) = 0

=> (x – 3)(2x -5) = 0

=> x – 3 = 0 hoặc 2x – 5 = 0

* x – 3 = 0 => x = 3

* 2x – 5 = 0 => x = 5/2

Vậy phương trình có tập nghiệm S = {0, 5/2}


 

20 tháng 2 2021

\(2\left(x+1\right)-1=3-\left(1-2x\right)\)

\(\Leftrightarrow2x+2-1=3-1+2x\)

\(\Leftrightarrow2x-2x=3-1-2+1\)

\(\Leftrightarrow0x=1\left(\exists x\inℝ\right)\)

Vậy tập nghiệm pt: \(S=\varnothing\)

* Ta có: \(mx=2-x\Leftrightarrow mx+x=2\Leftrightarrow\left(m+1\right)x=2\)

Pt vô nghiệm <=>  m+1=0 <=> m=-1

20 tháng 2 2021

* giải phương trình:

   2(x+1)-1=3-(1-2x)

     2x+2-1=3-1+2x

       2x+1=2+2x

 -> Phương trình này vô ngiệm

* Tìm m để phương trình sau vô nghiệm

           Ta có \(mx=2-x\)

                    \(\Leftrightarrow\left(m+1\right)x=2\)

                    \(\Leftrightarrow x=\frac{2}{m+1}\)

     Để \(\frac{2}{m+1}\)vô nghiệm thì m+1 phải bằng 0

   => m=0-1=-1

   => Để phương trình đó vô nghiệm thì m=-1

27 tháng 2 2016

x=3; 

x = -(căn bậc hai(3)*i+3)/2;

x = (căn bậc hai(3)*i-3)/2;

10 tháng 8 2020

Em ko chắc nhé 

a, \(\left|x-1\right|+\left|2-x\right|=3\)

\(\Leftrightarrow\left|x-1+2-x\right|=3\Leftrightarrow\left|1\right|\ne3\)

b, \(\left|x+3\right|+\left|x-5\right|=3x-1\)

\(\Leftrightarrow\left|x+3+x-5\right|=3x-1\)

\(\Leftrightarrow\left|2x-2\right|=3x-1\Leftrightarrow\orbr{\begin{cases}2x-2=3x-1\\-2x+2=3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\-5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}}\)

10 tháng 8 2020

a)  \(\left|x-1\right|+\left|2-x\right|=3\)

+) TH1 : \(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}\Leftrightarrow}1\le x\le2}\)

Ta có : \(\left|x-1\right|+\left|2-x\right|=3\)

\(\Leftrightarrow x-1+2-x=3\)

\(\Leftrightarrow1=3\)( vô lí ) 

+) TH2 : \(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}\left(L\right)}}\)

+) TH3 : \(\hept{\begin{cases}x-1\ge0\\2-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\Leftrightarrow}x\ge2}\)

Ta có : \(\left|x-1\right|+\left|2-x\right|=3\)

\(\Leftrightarrow x-1+x-2=3\)

\(\Leftrightarrow2x-3=3\)

\(\Leftrightarrow x=3\)( Thỏa mãn ) 

+) TH4 : \(\hept{\begin{cases}x-1\le0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\le2\end{cases}\Leftrightarrow}x\le1}\)

Ta có : \(\left|x-1\right|+\left|2-x\right|=3\)

\(\Leftrightarrow1-x+2-x=3\)

\(\Leftrightarrow3-2x=3\)

\(\Leftrightarrow x=0\) ( thỏa mãn ) 

Vậy tập nghiệm của phương trình là S = { 0 ; 3 }

P/s : ๖²⁴ʱ✰๖ۣۜCɦεɾɾү☠๖ۣۜBσмbʂ✰⁀ᶦᵈᵒᶫッ Ta có : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). => Sai rùi nha bạn ^_^

20 tháng 2 2021

\(\frac{2}{x-1}-\frac{3x^2}{x^3-1}=\frac{x}{x^2+x+1}\)

ĐKXĐ : x khác 1

pt <=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{2x^2+2x+2-3x^2-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{-2x^2+3x+2}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

=> -2x2 + 3x + 2 = 0

<=> -2x2 - x + 4x + 2 = 0

<=> -x( 2x + 1 ) + 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( 2 - x ) = 0

<=> x = -1/2 hoặc x = 2 ( tm )

Vậy ...

20 tháng 2 2021

\(\frac{2}{x-1}-\frac{3x^2}{x^3-1}=\frac{x}{x^2+x+1}\)ĐK : x \(\ne\)1

\(\Leftrightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow2x^2+2x+2-3x^2=x^2-x\)

\(\Leftrightarrow-x^2+2x+2-x^2+x=0\)

\(\Leftrightarrow-2x^2+3x+2=0\Leftrightarrow-\left(2x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\frac{1}{2};x=2\)

Vậy tập nghiệm của phương trình là S = { 1/2 ; 2 }