K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(x+\sqrt{x}+12=0\)đk : x >= 0 

Vì \(x+\sqrt{x}+12=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+12\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\)

Vậy pt vô nghiệm 

 

21 tháng 12 2018

\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)

\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)

=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)

=>x=3 tmdk

21 tháng 12 2018

sorry mk vt nham

20 tháng 9 2019

\(a,\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\\sqrt{x+2}=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-\frac{17}{9}\left(l\right)\end{cases}}\)

\(b,\Leftrightarrow\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)

Bạn giải nốt nhá

11 tháng 8 2017

\(\sqrt{12-\frac{12}{x^2}}+\sqrt{x^2-\frac{12}{x^2}}=x^2\)

\(pt\Leftrightarrow\sqrt{12-\frac{12}{x^2}}-3+\sqrt{x^2-\frac{12}{x^2}}-1=x^2-4\)

\(\Leftrightarrow\frac{12-\frac{12}{x^2}-9}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{x^2-\frac{12}{x^2}-1}{\sqrt{x^2-\frac{12}{x^2}}+1}=x^2-4\)

\(\Leftrightarrow\frac{\frac{3x^2-12}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^4-x^2-12}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x^2-4\right)=0\)

\(\Leftrightarrow\frac{\frac{3\left(x-2\right)\left(x+2\right)}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{\left(x-2\right)\left(x+2\right)\left(x^2+3\right)}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^2+3}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-1\right)=0\)

SUy ra x=±2

11 tháng 8 2017

\(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)+\(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)=12

Đặt  \(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)=a                                   (a>0)

=> \(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)\(a^2\)

Chị QA 114 đấy

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2 

 ĐK: \(x\ge\frac{3}{2}\)

 \(\sqrt{2x-3}+3=x\) 

<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\)

=> \(2x-3=\left(x-3\right)^2\) 

<=> \(2x-3=x^2-6x+9\) 

<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\) 

=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\) 

Hai câu sau tương tự nhé bn 

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)

<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\) 

<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\) 

<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) 

<=> \(2x=3=>x=\frac{3}{2}\)

\(\sqrt{x^2-2x+2}=x-2\)

\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

27 tháng 11 2018

Dat   \(\sqrt[3]{12-x}=a;\)\(\sqrt[3]{x+15}=b\)

Khi do ta co:   \(\hept{\begin{cases}a+b=3\\a^3+b^3=27\end{cases}}\)  <=>  \(\hept{\begin{cases}a=3-b\\a^3+b^3=27\end{cases}}\) <=>  \(\hept{\begin{cases}a=3-b\\\left(3-b\right)^3+b^3=27\end{cases}}\)

<=>   \(\hept{\begin{cases}a=3-b\\9\left(b^2-3b+3\right)=27\end{cases}}\)  <=>  \(\hept{\begin{cases}a=3-b\\b^2-3b+3=3\end{cases}}\) <=>  \(\hept{\begin{cases}a=3-b\\b\left(b-3\right)=0\end{cases}}\)

Xet:   \(b\left(b-3\right)=0\)

<=>   \(\orbr{\begin{cases}b=0\\b=3\end{cases}}\)

Đến đây tự giải