Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x^3-x^2-x=\frac{1}{3}\Leftrightarrow3x^3-3x^2-3x=1\Leftrightarrow x^3+3x^2+3x+1=4x^3\)
\(\Leftrightarrow\left(x+1\right)^3=\left(\sqrt[3]{4}x\right)^3\Leftrightarrow x+1=\sqrt[3]{4}x\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
2/ ĐKXĐ \(x\ge1\)
\(3+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\Leftrightarrow3=\sqrt{\left(\sqrt{x-1}-1\right)^2}\Leftrightarrow\left|\sqrt{x-1}-1\right|=3\)
Tới đây xét trường hợp rồi giải :)
\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\) ( 1 )
\(ĐKXĐ:x\ge-1\)
Đặt: \(y=\sqrt{x+1};z=\sqrt{2}\)khi đó ( 1 ) có dạng \(x^3+y^3+z^3=\left(x+y+z\right)^3\)( 2 )
Chứng minh được ( 2 ) \(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
+ \(x+y=0\Leftrightarrow x+\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=-x\Rightarrow x=\frac{1-\sqrt{5}}{2}\)( thoản mãn )
+ \(x+z=0\Leftrightarrow x+\sqrt{2}=0\Leftrightarrow x=-\sqrt{2}\)( không thỏa mãn )
+ \(y+z=0\Leftrightarrow\sqrt{x+1}+\sqrt{2}=0\)( vô nghiệm )
Vậy pt có nghiêm duy nhất là : \(\frac{1-\sqrt{5}}{2}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
Đặt:
\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)
Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:
\(b-a+\sqrt[3]{a^3-b^3+8}=2\)
\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)
\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)
\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)
\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)
\(ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow b^2-1+2ab=2a\\ \Leftrightarrow2ab-2a+b^2-1=0\\ \Leftrightarrow2a\left(b-1\right)+\left(b-1\right)\left(b+1\right)=0\\ \Leftrightarrow\left(2a+b+1\right)\left(b-1\right)=0\\ \Leftrightarrow b-1=0\left(2a+b+1>0\right)\\ \Leftrightarrow b=1\\ \Leftrightarrow x^2-x+1=1\\ \Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)