Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow x=1\)
Bổ sung tiếp bài của dưới
\(4\left(x^2+3x\right)-6x^2-8x-2=0\)
\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)
\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)
\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
dặt \(\sqrt{2x+1}=a;a\ge0.\)
\(\sqrt{x-2}=b;b\ge0\)
ta có: \(\sqrt{2x+1}-\sqrt{x-2}=x+3\) (ĐK: x>2)
=> \(a-b=a^2-b^2\)
<=>\(\left(a-b\right)\left(a+b-1\right)=0\)
=> \(\orbr{\begin{cases}a-b=0\\a+b-1=0\end{cases}\Rightarrow\orbr{\begin{cases}a=b\\a-1=b\end{cases}}}\)
+) với a=b => a^2 =b^2 => 2x+1=x-2 <=> x=-3 ( không TM đk x>2 )
+) với a-1=b => (a-1)^2 =b^2 => a^2 -2a+1=b^2 => \(2x+1-2.\sqrt{2x+1}+1=x-2\) <=> ptvn
vậy PTVN
Pt a: Đk \(1< x\le6\)
\(\frac{\sqrt{6-x}-2x+3}{\sqrt{x-1}}=\sqrt{x-1}\Rightarrow\sqrt{6-x}-2x+3=x-1\)
\(\Leftrightarrow\sqrt{6-x}=3x-4\Rightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow6-x=9x^2-24x+16\Leftrightarrow9x^2-23x+10=0\)
\(\Leftrightarrow9x^2-18x-5x+10=0\Leftrightarrow9x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(9x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{9}\left(Lọai\right)\\x=2\left(Thoả\right)\end{cases}}\)
Vậy \(S=\left\{2\right\}\)
Pt b :
Đk: \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\left(x+1\right)\sqrt{x^2-4}=2x+2\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-4}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\sqrt{x^2-4}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Lọai\right)\\\sqrt{x^2-4}=2\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4}=2\Rightarrow x^2-4=4\Leftrightarrow x^2=8\Leftrightarrow x=2\sqrt{2}\left(Thoả\right)\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)
a, tìm trong nâng cao phát triển tập 2
b,
ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)
<=>x+3=2a2y2+4aby+2b2
<=>ax+3a=2a3y2+4a2by+2ab2
<=>ax+3a-2ab2=2a3y2+4a2by
\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)
đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
\(\Rightarrow\sqrt{2x-1}=y+1\)
sau đó đưa về hệ đối xứng là được
Trên tia đối tia CB lấy F sao cho AM = 2CF
\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)
\(\Rightarrow DM=2DF\) và \(\widehat{ADM}=\widehat{CDF}\) nên \(\widehat{MDF}=90^0\) hay \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\) (1)
Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\) \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\) (2)
(1), (2) => \(\widehat{EDF}=\widehat{DEC}\) nên DF = EF
Lại có \(DM=2DF=2EF=2CF+2EC=AM+2EC\)
Done!
\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)
(Đk có nghiệm: \(x\ge\frac{1}{2}\))
\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)
Điều kiện(chặt):x\(\ge\)1
Bình phương hai vế ta có
\(2x+3=x^2-2x+1\Leftrightarrow x^2-4x-2=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{6}\\x=2-\sqrt{6}\left(L\right)\end{cases}}\)
Vậy phương trình đã cho có 1 nghiệm là x=2-\(\sqrt{6}\)
\(\sqrt{2x+3 }=x-1\)
\(\Rightarrow2x+3=x^2-2x+1\)
\(\Rightarrow-x^2+4x+2=0\)
\(\Rightarrow x^2-4x-2=0\)
\(\Rightarrow\left(x-2\right)^2=6\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{6}\\x-2=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{cases}}\)