\(\sqrt{2X+1}\) - \(\sqrt{X-2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

dặt  \(\sqrt{2x+1}=a;a\ge0.\)

\(\sqrt{x-2}=b;b\ge0\)

ta có: \(\sqrt{2x+1}-\sqrt{x-2}=x+3\)  (ĐK: x>2)

=>  \(a-b=a^2-b^2\)

<=>\(\left(a-b\right)\left(a+b-1\right)=0\)

=> \(\orbr{\begin{cases}a-b=0\\a+b-1=0\end{cases}\Rightarrow\orbr{\begin{cases}a=b\\a-1=b\end{cases}}}\)

+) với a=b  => a^2 =b^2 => 2x+1=x-2 <=> x=-3  ( không TM đk x>2 )

+) với a-1=b => (a-1)^2 =b^2 => a^2 -2a+1=b^2 => \(2x+1-2.\sqrt{2x+1}+1=x-2\)  <=>  ptvn

vậy PTVN

17 tháng 9 2018

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow x=1\)

23 tháng 8 2019

Bổ sung tiếp bài của dưới

\(4\left(x^2+3x\right)-6x^2-8x-2=0\)

\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)

\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)

\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.

a,    tìm trong nâng cao phát triển tập 2

b,

ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)

<=>x+3=2a2y2+4aby+2b2

<=>ax+3a=2a3y2+4a2by+2ab2

<=>ax+3a-2ab2=2a3y2+4a2by

\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)

đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

\(\Rightarrow\sqrt{2x-1}=y+1\)

sau đó đưa về hệ đối xứng là được

24 tháng 7 2017

Trên tia đối tia CB lấy F sao cho AM = 2CF

\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)

\(\Rightarrow DM=2DF\)   và  \(\widehat{ADM}=\widehat{CDF}\)  nên  \(\widehat{MDF}=90^0\)  hay  \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\)  (1)

Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\)  \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\)    (2)

(1), (2) => \(\widehat{EDF}=\widehat{DEC}\)  nên DF = EF

Lại có  \(DM=2DF=2EF=2CF+2EC=AM+2EC\)

Done!

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

12 tháng 8 2017

đăng ít một thôi bạn

12 tháng 8 2017

Bỏ câu c,d đi ạ 

 ĐK: \(x\ge\frac{3}{2}\)

 \(\sqrt{2x-3}+3=x\) 

<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\)

=> \(2x-3=\left(x-3\right)^2\) 

<=> \(2x-3=x^2-6x+9\) 

<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\) 

=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\) 

Hai câu sau tương tự nhé bn 

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)

<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\) 

<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\) 

<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) 

<=> \(2x=3=>x=\frac{3}{2}\)

\(\sqrt{x^2-2x+2}=x-2\)

\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)