K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2023

\(\left(x+1\right)^2+\left|x-7\right|+6=\left(x+2\right)^2\)

\(< =>x^2+2x+1+\left|x-7\right|+6=x^2+4x+4\)

\(< =>\left|x-7\right|=x^2-x^2+4x-2x+4-1-6\)

\(< =>\left|x-7\right|=2x-3\)

\(< =>\left[{}\begin{matrix}x-7=2x-3\\x-7=-2x+3\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x-2x=-3+7\\x+2x=3+7\end{matrix}\right.\\ < =>\left[{}\begin{matrix}-x=4\\3x=10\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{3}\end{matrix}\right.\)

4 tháng 6 2020

\(\left(6x+7\right)^2.\left(3x+4\right).\left(x+1\right)=6\)

<=> \(\left(36x^2+84x+49\right)\left(3x^2+7x+4\right)=6\)

Đặt: \(3x^2+7x+4=t\)

=> \(36x^2+84x+49=12\left(3x^2+7x+4\right)+1=12t+1\)

Ta có phương trình ẩn t: 

\(t\left(12t+1\right)=6\)

<=> \(12t^2+t-6=0\)

<=> \(12t^2-8t+9t-6=0\)

<=> \(4t\left(3t-2\right)+3\left(3t-2\right)=0\)

<=> \(\left(4t+3\right)\left(3t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=-\frac{3}{4}\\t=\frac{2}{3}\end{cases}}\)

Với \(t=-\frac{3}{4}\) ta có phương trình: \(3x^2+7x+4=-\frac{3}{4}\)

<=> \(x^2+\frac{7}{3}x+\frac{19}{12}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=-\frac{2}{9}\)

<=> \(\left(x+\frac{7}{6}\right)^2=-\frac{2}{9}\)phương trình vô nghiệm

+) Với \(t=\frac{2}{3}\)ta có: \(3x^2+7x+4=\frac{2}{3}\)

<=> \(x^2+\frac{7}{3}x+\frac{10}{9}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=\frac{1}{4}\)

<=> \(\left(x+\frac{7}{6}\right)^2=\frac{1}{4}\)

<=> \(x=-\frac{2}{3}\)

hoặc \(x=-\frac{5}{3}\)

Kết luận:...

Cách khác cô Chi nhé ! , nhưng cách này tới đấy xin cùy.

\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)

\(108x^4+504x^3+879x^2+679x+196=6\)

\(108x^4+504x^3+879x^2+679x+190=0\)

3 tháng 10 2020

Ta có : |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| -x + 7 = 0

=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7

ĐK \(x-7\ge0\Rightarrow x\ge7\)

Khi đó ta có x - 2 > 0 ; x - 3 > 0 ; ... x - 6 > 0

=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7

<=> x - 2 + x - 3 + x - 4 + x - 5 + x - 6 = x - 7

=> 5x - 20 = x - 7

=> 4x = 13

=> x = 4,25 (loại)

Vậy x \(\in\varnothing\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

16 tháng 2 2020

=> x2+14x+49+x2-3x+2x-6=2(x2+4x-x-4)

=>x2+14x+49+x2-x-6-2x2-8x+8=0

=> (x2+x2-2x2) + ( 14x-x-8x ) + (49-6+8)=0

=>5x + 51 = 0

=>5x=-51

Vậy S={-51/5}

=>x=-51/5

8 tháng 10 2017

\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\left(x-2\right)^2-\left(x^2-9\right)-6=0\)

\(x^2-4x+4-x^2+9-6=0\)

\(-4x+7=0\)

\(-4x=-7\)

\(x=\frac{7}{4}\)

vay \(x=\frac{7}{4}\)

16 tháng 8 2019

\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)

\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)

\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)

\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)

Đặt \(t=x^2+2x+2\left(t\ge1\right)\)

\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)

\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)

\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)