Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| -x + 7 = 0
=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7
ĐK \(x-7\ge0\Rightarrow x\ge7\)
Khi đó ta có x - 2 > 0 ; x - 3 > 0 ; ... x - 6 > 0
=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7
<=> x - 2 + x - 3 + x - 4 + x - 5 + x - 6 = x - 7
=> 5x - 20 = x - 7
=> 4x = 13
=> x = 4,25 (loại)
Vậy x \(\in\varnothing\)
\(\left(6x+7\right)^2.\left(3x+4\right).\left(x+1\right)=6\)
<=> \(\left(36x^2+84x+49\right)\left(3x^2+7x+4\right)=6\)
Đặt: \(3x^2+7x+4=t\)
=> \(36x^2+84x+49=12\left(3x^2+7x+4\right)+1=12t+1\)
Ta có phương trình ẩn t:
\(t\left(12t+1\right)=6\)
<=> \(12t^2+t-6=0\)
<=> \(12t^2-8t+9t-6=0\)
<=> \(4t\left(3t-2\right)+3\left(3t-2\right)=0\)
<=> \(\left(4t+3\right)\left(3t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=-\frac{3}{4}\\t=\frac{2}{3}\end{cases}}\)
Với \(t=-\frac{3}{4}\) ta có phương trình: \(3x^2+7x+4=-\frac{3}{4}\)
<=> \(x^2+\frac{7}{3}x+\frac{19}{12}=0\)
<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=-\frac{2}{9}\)
<=> \(\left(x+\frac{7}{6}\right)^2=-\frac{2}{9}\)phương trình vô nghiệm
+) Với \(t=\frac{2}{3}\)ta có: \(3x^2+7x+4=\frac{2}{3}\)
<=> \(x^2+\frac{7}{3}x+\frac{10}{9}=0\)
<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=\frac{1}{4}\)
<=> \(\left(x+\frac{7}{6}\right)^2=\frac{1}{4}\)
<=> \(x=-\frac{2}{3}\)
hoặc \(x=-\frac{5}{3}\)
Kết luận:...
Cách khác cô Chi nhé ! , nhưng cách này tới đấy xin cùy.
\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)
\(108x^4+504x^3+879x^2+679x+196=6\)
\(108x^4+504x^3+879x^2+679x+190=0\)
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}=\frac{3\left(x-3\right)\left(3-x\right)}{12}\)
\(\Leftrightarrow12\left(x-3\right)-2\left(x-3\right)\left(2x-5\right)=3\left(x-3\right)\left(3-x\right)\)
\(\Leftrightarrow12\left(x-3\right)-2\left(x-3\right)\left(2x-5\right)-3\left(x-3\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(13-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\13-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=13\end{cases}}}\)
Vậy tập nghiệm của phương trình trên là:\(S=\left\{3;13\right\}\)
#hoktot<3#
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\frac{12\left(x-3\right)}{12}-\frac{\left(x-3\right)\left(2x-5\right)2}{12}=\frac{\left(x-3\right)\left(3-x\right)3}{12}\)
Khử mẫu : \(12\left(x-3\right)-\left(x-3\right)\left(2x-5\right)2=\left(x-3\right)\left(3-x\right)3\)
\(34x-66-4x^2=18x-3x^2-27\)
\(34x-66-4x^2-18x+3x^2+27=0\)
\(16x-39-x^2=0\)
Phân tích nốt nhé !
Ta có :
\(\left(x-1\right)\left(x-12\right)=2\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow x^2-13x+12=2\left(x^2-5x+6\right)\)
\(\Leftrightarrow x^2-13x+12=2x^2-10x+12\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy : \(x\in\left\{0,-2\right\}\)
Nhị thức có nghiệm lần lượt là
-1 ; 1 ; 0 ; 2
\(x< -1\)
\(-1\le x< 0\)
\(0\le x< 1\)
\(1\le x< 2\)
\(x\ge2\)
Xét \(x< -1\) ta có
\(\left|x+1\right|=-\left(x+1\right)\)
\(\left|x-1\right|=-\left(x-1\right)\)
\(\left|x\right|=-x\)
\(\left|x-2\right|=-\left(x-2\right)\)
Ta có pt
\(-\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)
\(\Leftrightarrow x=-2\)
Xét \(-1\le x< 0\)ta có pt
\(\left(x+1\right)-3\left(x-1\right)=x+2-x-2\left(x-2\right)\)
\(\Leftrightarrow0x=2\) ( pt vô nghiệm)
Xét \(0\le x< 1\)ta có pt
\(x+1-3\left(x-1\right)=x+2+x-2\left(x-2\right)\)
\(\Leftrightarrow x=-1\)(loại)
Xét \(1\le x< 2\) ta có pt
\(x+1+3\left(x+1\right)=x+2+x-2\left(x-2\right)\)
\(\Leftrightarrow x=2\) (loại)
Xét \(x\ge2\) ta có pt
\(x+1+3\left(x-1\right)=x+2+x+2\left(x-2\right)\)
\(\Leftrightarrow0x=0\)
Vậy \(\orbr{\begin{cases}x=2\\x\ge2\end{cases}}\)....
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x^2-9\right)-6=0\)
\(x^2-4x+4-x^2+9-6=0\)
\(-4x+7=0\)
\(-4x=-7\)
\(x=\frac{7}{4}\)
vay \(x=\frac{7}{4}\)