Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)
\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)
ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)
\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)
\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)
Thỏa mãn ĐK
Các trường hợp khác làm tương tự
a, \(ĐKXĐ:x\ne2\)
\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
\(\Rightarrow1+3x-6=3-x\)
\(\Leftrightarrow1+3x-6-3+x=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\left(ktm\right)\)
vậy x thuộc tập hợp rỗng
b, \(ĐKXĐ:x\ne\pm1\)
\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x-1=0\Rightarrow x=1\left(ktm\right)\end{cases}}\)
vậy x = 0
c, \(ĐKXĐ:x\ne\pm\frac{1}{2}\)
\(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\frac{32x^2}{12\left(1-2x\right)\left(2x+1\right)}=\frac{-8x\left(2x+1\right)}{12\left(1-2x\right)\left(2x+1\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(2x+1\right)}\)
\(\Rightarrow32x^2=-16x^2-8x-3+6x-24x+48x\)
\(\Leftrightarrow48x^2=22x-3\)
\(\Leftrightarrow48x^2-22x+3=0\)
Giai phương trình sau:
1/ 5.(x2-2x)= ( 3+5x).(x-1)
2/ \(\frac{3x+2}{x-1}\) + \(\frac{2x-4}{x+2}\) =5
\(2,\frac{3x+2}{x-1}+\frac{2x-4}{x+2}=5\)
\(Đkxđ:x\ne1;x\ne-2\)
\(\Leftrightarrow\left(3x+2\right)\left(x+2\right)+\left(2x-4\right)\left(x-1\right)=5\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow x=6\)
Vậy ...........
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-1\)ĐKXĐ : \(x\ne\pm1;x\ne2\)
\(\Leftrightarrow\frac{3\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)-\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow3x-6=x^2+x-x^2+x+2\)
\(\Leftrightarrow3x-6-2x-2=0\)
\(\Leftrightarrow x-8=0\)
\(\Leftrightarrow x=8\)( thỏa )
Vậy....
\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-\)\(1\)
\(\Leftrightarrow\) \(\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\)\(=\frac{x}{x-2}-1\)
\(\Leftrightarrow\)\(\frac{3}{x+1}=\frac{x}{x-2}-1\)
ĐKXĐ : \(x\ne-1,2\)
\(\Leftrightarrow\)\(\frac{3.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)\(=\frac{x.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}\)\(-\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)
\(\Leftrightarrow\)\(3x-6=x^2+x-\left(x^2-2x+x-2\right)\)
\(\Leftrightarrow\)\(3x-6=x^2+x-x^2+x+2\)
\(\Leftrightarrow\)\(3x-x-x=6+2\)
\(\Leftrightarrow\) \(x=8\)
Vậy phương trình có nghiệm là : \(x=8\)