Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
Bài 1:
a/ \(x^2+2x+1+z^2+12z+36+1=\left(x+1\right)^2+\left(z+6\right)^2+1>0\) (đpcm)
b/ Câu này đề sai, hoặc là 14y là 4y hoặc là số cuối là 1 số to hơn 16 nhiều
Bài 2:
a/ ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow12=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+2x-15=12\)
\(\Leftrightarrow x^2+2x-27=0\Rightarrow x=-1\pm2\sqrt{7}\)
b/ \(\Leftrightarrow\frac{7x}{2}-\frac{x}{3}=-\frac{6}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{19}{6}x=-\frac{3}{2}\Rightarrow x=-\frac{9}{19}\)
c/ \(\Leftrightarrow\frac{x}{3}-\frac{x}{4}=6-\frac{1}{5}-\frac{1}{2}+\frac{2}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{29}{5}\Rightarrow x=\frac{348}{5}\)
a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)
\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0
\(\Rightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
Vậy x = -65
b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)
\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)
\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)
Vì \(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0
\(\Rightarrow x-99=0\)
\(\Leftrightarrow x=99\)
Vậy x =99
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)
\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)
f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\left(x^2-2\right)\)
\(=x^2+1-x^2+2\)
\(=3\)
\(3x^2+7x-20=0\)
Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)
a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)
<=> 24x - 4(3x - 1) = 24 + 3(x - 3)
<=> 24x - 12x - 4 = 24 + 3x - 9
<=> 12x + 4 = 24 + 3x - 9
<=> 12x + 4 = 3x + 15
<=> 12x = 3x + 15 - 4
<=> 12x = 3x + 11
<=> 12x - 3x = 11
<=> 9x = 11
<=> x = 11/9
Vậy: tập nghiệm phương trình: S = {11/9}
b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)
<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x
<=> 3x - 15 + 3/2 = 2x - 4 - 6x
<=> 3x - 27/2 = -4x - 4
<=> 3x = -4x - 4 + 27/2
<=> 3x = -4x + 19/2
<=> 3x + 4x = 19/2
<=> 7x = 19/2
<=> x = 19/14
Vậy: tập nghiệm phương trình: S = {19/14}
c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)
<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)
<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60
<=> 10x - 6 - 21x + 3 = 6x + 3 - 60
<=> -11x - 3 = 6x - 57
<=> -3 = 6x - 57 + 11x
<=> -3 = 17x - 57
<=> -3 + 57 = 17x
<=> 54 = 17x
<=> x = 54/17
Vậy: tập nghiệm phương trình: S = {59/17}
d) 3x2 + 7x - 20 = 0
<=> 3x2 + 12x - 5x - 20 = 0
<=> 3x(x + 4) - 5(x + 4) = 0
<=> (x + 4)(3x - 5) = 0
<=> x + 4 = 0 hoặc 3x - 5 = 0
<=> x = -4 hoặc x = 5/3
Vậy: tập nghiệm phương trình: S = {-4; 5/3}
e) x3 - 3x + 2 = 0
<=> (x2 + x - 2)(x - 1) = 0
<=> (x - 1)(x + 2)(x - 1) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy: tập nghiệm phương trình: S = {1; -2}