Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+2}{98}\)
\(\Rightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+2}{98}+1\)
\(\Rightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}\right)=\left(x+100\right).\left(\frac{1}{94}+\frac{1}{92}\right)\)
=> \(\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}\right)-\left(x+100\right)\left(\frac{1}{94}+\frac{1}{92}\right)=0\)
=> \(\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\Rightarrow x+100=0\left(\text{vì }\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\right)\)
=> x = - 100
Vậy x = - 100
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{92}>\frac{1}{94}>\frac{1}{96}>\frac{1}{98}\)nên \(\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
\(\Leftrightarrow\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0.Ma:\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}< 0\Rightarrow x=-100\)
a)\(\dfrac{1}{2}\)(x+1)+\(\dfrac{1}{4}\)(x+3)=3-\(\dfrac{1}{3}\)(x+2)
\(\Leftrightarrow\)\(\dfrac{1}{2}\)x+\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)x+\(\dfrac{3}{4}\)=3-\(\dfrac{1}{3}\)x-\(\dfrac{2}{3}\)
\(\Leftrightarrow\)\(\dfrac{1}{2}\)x+\(\dfrac{1}{4}\)x+\(\dfrac{1}{3}\)x=-\(\dfrac{1}{2}\)-\(\dfrac{3}{4}\)+3-\(\dfrac{2}{3}\)
\(\Leftrightarrow\)\(\dfrac{13}{12}\)x=\(\dfrac{13}{12}\)
\(\Leftrightarrow\)x=1
Vậy nghiệm của pt là x=1
b)\(\dfrac{x+2}{98}\)+\(\dfrac{x+4}{96}\)=\(\dfrac{x+6}{94}\)+\(\dfrac{x+8}{92}\)
\(\Leftrightarrow\)\(\dfrac{x+2}{98}\)+\(\dfrac{x+4}{96}\)-\(\dfrac{x+6}{94}\)-\(\dfrac{x+8}{92}\)=0
\(\Leftrightarrow\)(\(\dfrac{x+2}{98}\)+1)+(\(\dfrac{x+4}{96}\)+1)-(\(\dfrac{x+6}{94}\)+1)-(\(\dfrac{x+8}{92}\)+1)=0
\(\Leftrightarrow\)\(\dfrac{x+2+98}{98}\)+\(\dfrac{x+4+96}{96}\)-\(\dfrac{x+6+94}{94}\)-\(\dfrac{x+8+92}{92}\)=0
\(\Leftrightarrow\)\(\dfrac{x+100}{98}\)+\(\dfrac{x+100}{96}\)-\(\dfrac{x+100}{94}\)-\(\dfrac{x+100}{92}\)=0
\(\Leftrightarrow\)(x+100)(\(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\))=0
\(\Leftrightarrow\)x+100=0(vì\(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\)\(\ne\)0)
\(\Leftrightarrow\)x=-100
Vậy nghiệm của pt là x=-100
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\) ( do \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\) )
\(\Leftrightarrow x=-100\)
b) \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)
a) Ta có: 3x(x-1)=(x-1)(x+2)
⇔3x(x-1)-(x-1)(x+2)=0
⇔(x-1)(3x-x-2)=0
⇔(x-1)(2x-1)=0
⇔2(x-1)2=0
mà 2≠0
nên (x-1)2=0
⇔x-1=0
hay x=1
Vậy: x=1
b) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)
\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)
\(\Leftrightarrow-181x-362=0\)
\(\Leftrightarrow-181x=362\)
hay x=-2
Vậy: x=-2
c) Ta có: \(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+2\right)\)
\(\Leftrightarrow\frac{x}{2}+\frac{1}{2}+\frac{x}{4}+\frac{3}{4}=3-\frac{x}{2}-1\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{4}+\frac{5}{4}-\frac{-x}{2}-2=0\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2}-\frac{3}{4}=0\)
\(\Leftrightarrow\frac{x}{4}+x-\frac{3}{4}=0\)
\(\Leftrightarrow\frac{x}{4}+\frac{4x}{4}-\frac{3}{4}=0\)
\(\Leftrightarrow5x-3=0\)
\(\Leftrightarrow5x=3\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
d) Ta có: \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
mà \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
nên x+100=0
hay x=-100
Vậy: x=-100
\(\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Rightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Rightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy : \(x=-100\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}+\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì : \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy \(x=-100\)
Chúc bạn học tốt !!!
\(\Leftrightarrow\frac{x+8}{92}+1+\frac{x+7}{93}+1+\frac{x+6}{94}+1\ge\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Leftrightarrow\frac{x+100}{92}+\frac{x+100}{93}+\frac{x+100}{94}\ge\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{92}-\frac{1}{98}+\frac{1}{93}-\frac{1}{97}+\frac{1}{94}-\frac{1}{96}\right)\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{6}{92.98}+\frac{4}{93.97}+\frac{2}{94.96}\right)\ge0\)
\(\Leftrightarrow x+100\ge0\Rightarrow x\ge-100\)
a. \(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}=\dfrac{x+100}{94}+\dfrac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
c. \(\Leftrightarrow3x^2+3x-x-1=0\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow\left[\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Cộng hai vào mỗi vễ của phương trình ta có
\(\Leftrightarrow\frac{x+2}{98}+\frac{x+4}{96}+2=\frac{x+6}{94}+\frac{x+8}{92}+2\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{X+8}{92}+1\)
\(\Leftrightarrow\frac{x+2+98}{98}+\frac{x+4+96}{96}=\frac{x+6+94}{94}+\frac{x+8+92}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy S={-100}
1: \(\Leftrightarrow\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+4}{96}+1\right)=\left(\dfrac{x+6}{94}+1\right)+\left(\dfrac{x+8}{92}+1\right)\)
=>x+100=0
hay x=-100
2: \(\Leftrightarrow x\cdot\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{3}x-\dfrac{2}{3}\)
=>3/4x+5/4=-1/3x+7/3
=>13/12x=13/12
hay x=1