Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow27x-2x-4x-27+2=0\)
\(\Leftrightarrow21x=25\)
\(\Leftrightarrow x=\frac{25}{21}\)
Hết ý tưởng,phá tung ra,sai chỗ nào tự sửa nhé !
\(\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2+3\left(x+2\right)\left(x-3\right)-\left(5x-1\right)\left(x-4\right)}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{2x^2+4x+2+3x^2-3x-18-5x^2-21x+4}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{\left(4x-3x-21x\right)+\left(2-18+4\right)}{6}=\frac{56}{6}\)
\(\Leftrightarrow-20x-12=56\)
\(\Leftrightarrow-20x=68\)
\(\Leftrightarrow x=-\frac{17}{5}\)
Tự check lại nhá
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\) ( do \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\) )
\(\Leftrightarrow x=-100\)
b) \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)
Cam on bn nha