Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(x^3-4x^2+7x-6=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
=>x-2=0
hay x=2
c: \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
=>(x+1)(x+2)(2x+1)=0
hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)
d: \(2x^3-9x+2=0\)
\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)
hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)
a/ \(x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x^2-9\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
*) x + 3 = 0 <=> x = -3
*) x - 2 = 0 <=> x = 2
S = {-3;2}
b/ \(6x^3+x^2=2x\Leftrightarrow6x^3+x^2-2x=0\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left[\left(6x^2+4x\right)-\left(3x+2\right)\right]=x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=x\left(3x+2\right)\left(2x-1\right)=0\)
*) x = 0
*) 3x + 2 = 0 <=> x = -2/3
*) 2x - 1= 0 <=> x = 1/2
S = {0;-2/3;1/2}
c/ \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
*) x + 1 = 0 <=> x = -1
*) x - 2 = 0 <=> x = 2
*) x + 2 = 0 <=> x = -2
S = {-1;2;-2}
(x^2 + 4x + 3)(x^2 + 6x + 8) = 24
<=> x^4 + 10x^3 + 35x^2 + 50x + 24 = 24
<=> x^4 + 10x^3 + 35x^2 + 50x = 0
<=> x(x + 5)(x^2 + 5x + 10) = 0
<=> x = 0 hoặc x + 5 = 0 hoặc x^2 + 5x + 10 khác 0
<=> x = 0 hoặc x = -5
Câu 1:
\((x+2)(x^2-3x+5)=(x+2)x^2\)
\(\Leftrightarrow (x+2)(x^2-3x+5)-(x+2)x^2=0\)
\(\Leftrightarrow (x+2)(x^2-3x+5-x^2)=0\)
\(\Leftrightarrow (x+2)(-3x+5)=0\Rightarrow \left[\begin{matrix} x+2=0\\ -3x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{5}{3}\end{matrix}\right.\)
Câu 2:
\(2x^2-x=3-6x\)
\(\Leftrightarrow x(2x-1)=3(1-2x)=-3(2x-1)\)
\(\Leftrightarrow x(2x-1)+3(2x-1)=0\)
\(\Leftrightarrow (2x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-3\end{matrix}\right.\)
Câu 3:
\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow (x^3+2x^2)+(x+2)=0\Leftrightarrow x^2(x+2)+(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2+1)=0\Rightarrow \left[\begin{matrix} x+2=0\\ x^2+1=0(\text{vô lý})\end{matrix}\right.\Rightarrow x=-2\)
Câu 5:
\(3x^2+7x-20=0\)
\(\Leftrightarrow 3x^2+12x-5x-20=0\)
\(\Leftrightarrow 3x(x+4)-5(x+4)=0\)
\(\Leftrightarrow (3x-5)(x+4)=0 \Rightarrow \left[\begin{matrix} x=\frac{5}{3}\\ x=-4\end{matrix}\right.\)
phân tích mẫu thành nhân tử
VD:x2+6x+8=x2+2x+4x+8=(x+2)(x+4)
x2+10x+24=x2+4x+6x+24=(x+6)(x+4).....
kết quả ra1/x-1/x+8=4/105
chuyển vế rồi tính
Ta có: \(\left(x^2+4x+3\right)\left(x^2+6x+8\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x+2\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)(1)
Ta có: \(1\cdot2\cdot3\cdot4=24\)(2)
Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}x+1=1\\x+2=2\\x+3=3\\x+4=4\end{matrix}\right.\Leftrightarrow x=0\)
Vậy: x=0
Sai từ chỗ (1)
(1)\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)(2)
Đặt \(y=x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
\(\left(1\right)\Leftrightarrow y^2+2y-24=0\)
\(\Leftrightarrow\left(y-4\right)\left(y+6\right)=0\Rightarrow\left[{}\begin{matrix}y=4\\y=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\end{matrix}\right.\)
Vậy x=0 hoặc x=-5