Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
Nếu: \(x-1\ge0\) \(\Leftrightarrow\)\(x\ge1\) thì: \(\left|x-1\right|=x-1\)
Khi đó ta có: \(x^2-3x+2+x-1=0\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\) \(x-1=0\)
\(\Leftrightarrow\) \(x=1\) (thỏa mãn)
Nếu \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) thì \(\left|x-1\right|=1-x\)
Khi đó ta có: \(x^2-3x+2+1-x=0\)
\(\Leftrightarrow\) \(x^2-4x+3=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)
Vậy....
Lập bảng xét dấu :
x | 1 | ||
x-1 | - | 0 | + |
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)
\(\Leftrightarrow x^2-3x+2+x-1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)
\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)
\(\Leftrightarrow x^2-3x+2+1-x=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )
Vậy phương trình có tập nghiệm \(S=\left\{1\right\}\)
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
(2x^2-3x+1)(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2
<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2
<=> (2x^2+5x+1 - 4x)^2=25x^2
<=> (2x^2+x+1)^2=25x^2
<=> (2x^2+x+1)^2 - 25x^2 =0
<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0
<=>(2x^2-4x+1)(2x^2+6x+1)=0
<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0
<=> x^2-2x +1/2 =0
<=> (x^2-2x+1) -1/2 =0
<=> (x-1)^2 =1/2 => x-1 =căn(1/2) => x=căn(1/2)+1
=> x-1=-(căn(1/2)) => x=- (căn(1/2)) +1
Hoặc 2x^2 +6x +1=0
<=> x^2 + 3x +1/2 =0
<=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0
<=> (x+1.5)^2 - 7/4 =0
<=> (x+1.5)^2 = 7/4 => x+1.5 = căn(7/4) => x=căn(7/4) -1.5
=> x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5
nhớ thanks bạn (+_+)
a/ x.(x + 1)(x2 + x + 1) = 42
=> (x2 + x)(x2 + x + 1) = 42
Đặt a = x2 + x ta đc:
a.(a + 1) = 42
=> a2 + a - 42 = 0
=> (a - 6)(a + 7) = 0
=> a = 6 hoặc a = -7
Với a = 6 => x2 + x = 6 => x2 + x - 6 = 0 => (x - 2)(x + 3) = 0 => x = 2 hoặc x = -3
Với a = -7 => x2 + x = -7 => x2 + x + 7 = 0 , mà x2 + x + 7 > 0 => pt vô nghiệm
Vậy x = 2 , x = -3
b/ (3x - 1)2 - 5(2x + 1)2 + (6x - 3)(2x + 1) = (x - 1)2
=> 9x2 - 6x + 1 - 5.(4x2 + 4x + 1) + (12x2 - 3) = x2 - 2x + 1
=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x - 1 = 0
=> - 24x - 8 = 0
=> -24x = 8
=> x = -1/3
Vậy x = -1/3
a: =>-x+2x=3-7
=>x=-4
b: =>6x+2+2x-5=0
=>8x-3=0
hay x=3/8
c: =>5x+2x-2-4x-7=0
=>3x-9=0
hay x=3
d: =>10x2-10x2-15x=15
=>-15x=15
hay x=-1
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}