K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

 \(\sqrt{x^2-4x+3}=\sqrt{2-x}.\)ĐK \(\hept{\begin{cases}x^2-4x+3\ge0\\2-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le1:3\le x\\2\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}3\le x\\2\ge x\end{cases}}\)

\(\Rightarrow\sqrt{x^2-4x+3}^2=\sqrt{2-x}^2\)

\(\Rightarrow x^2-4x+3=2-x\)

\(\Rightarrow x^2-4x+3-2+x=0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{3+\sqrt{5}}{2}\\\frac{3-\sqrt{5}}{2}\end{cases}}\)

Vậy phương trình có tập nghiệm S={....}

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

5 tháng 7 2016

a) \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-x^2+6x-5\) (ĐKXĐ : \(1\le x\le5\) )\

Ta có : \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

\(\Rightarrow\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}\ge1+3=4\)

Lại có : \(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)

Do đó, phương trình tương đương với : \(\begin{cases}1\le x\le5\\\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=4\\-x^2+6x-5=4\end{cases}\)\(\Rightarrow x=3\left(TM\right)\)

Vậy nghiệm của phương trình là x = 3

b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Mặt khác, ta có : \(\begin{cases}\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{cases}\)\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)

Dấu đẳng thức xảy ra <=> x = 2.

Vậy nghiệm của phương trình :  x = 2

 

5 tháng 10 2015

\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)

\(\Leftrightarrow\sqrt{-x^2+4x+12}=\sqrt{3}-x^2+\sqrt{-x^2+2x+3}\)

\(VP=\sqrt{-x^2+4x+12}=\sqrt{-\left(x-2\right)^2+16}\le4\)

\(VT=\sqrt{3}-x^2+\sqrt{-x^2+2x+3}=\sqrt{3}-x^2+\sqrt{-\left(x-1\right)^2+4}\)

\(\le\sqrt{3}+2<\sqrt{4}+2=4\)

\(\Rightarrow VP\ne VT\) =>PT vô nghiệm

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
3 tháng 8 2016

a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\)  \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)

 \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

S={-2}

 

3 tháng 8 2016

b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\) 

\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)

\(\Leftrightarrow1-x^2=x+1\)

\(\Leftrightarrow-x-x^2=0\)

\(\Leftrightarrow-x\left(1+x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\) 

S={-1;0}

a,    tìm trong nâng cao phát triển tập 2

b,

ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)

<=>x+3=2a2y2+4aby+2b2

<=>ax+3a=2a3y2+4a2by+2ab2

<=>ax+3a-2ab2=2a3y2+4a2by

\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)

đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

\(\Rightarrow\sqrt{2x-1}=y+1\)

sau đó đưa về hệ đối xứng là được

24 tháng 7 2017

Trên tia đối tia CB lấy F sao cho AM = 2CF

\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)

\(\Rightarrow DM=2DF\)   và  \(\widehat{ADM}=\widehat{CDF}\)  nên  \(\widehat{MDF}=90^0\)  hay  \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\)  (1)

Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\)  \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\)    (2)

(1), (2) => \(\widehat{EDF}=\widehat{DEC}\)  nên DF = EF

Lại có  \(DM=2DF=2EF=2CF+2EC=AM+2EC\)

Done!