Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TQ: \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=B\left(x\right)\\A\left(x\right)=-B\left(x\right)\end{matrix}\right.\)
pt \(\Leftrightarrow\left|1+4x\right|=\left|7x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}1+4x=7x-2\\1+4x=-\left(7x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=3\\11x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{11}\end{matrix}\right.\left(TM\right)\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\frac{1}{11}\right\}\)
x3-4x2+7x-6=0
=>x3-2x2-2x2+3x+4x-6=0
=>x3-2x2+3x-2x2+4x-6=0
=>x(x2-2x+3)-2(x2-2x+3)=0
=>(x-2)(x2-2x+3)=0
=>x-2=0 hoặc x2-2x+3=0
- Với x-2=0 =>x=2
- Với x2-2x+3=0 =>vô nghiệm
Vậy pt trên có nghiệm là x=2
\(\frac{x^2-4x}{x^2+4x}+\frac{27}{2x^2+7x-4}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\frac{x\left(x-4x\right)}{x\left(x+4x\right)}+\frac{27}{2x^2+7x-4}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{2x^2+8x-x-4}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{2x\left(x+4\right)-\left(x+4\right)}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\frac{x-4}{x+4}+\frac{27}{\left(x+4\right)\left(2x-1\right)}=\frac{7-2x}{2x-1}-1\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1\right)+27=\left(7-2x\right)\left(x+4\right)-\left(x+4\right)\left(2x-1\right)\)
\(\Leftrightarrow2x^4-9x+31=-8x+32-4x^2\)
\(\Leftrightarrow2x^2-9x+31+8x-32+4x^2=0\)
\(\Leftrightarrow6x^2-x-1=0\)
\(\Leftrightarrow6x^2+2x-3x-1=0\)
\(\Leftrightarrow2x\left(3x+1\right)-\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(\text{nhận}\right)\\x=\frac{1}{2}\left(\text{loại}\right)\end{cases}}\)
\(\Rightarrow x=-\frac{1}{3}\)
Vậy: nghiệm phương trình là \(-\frac{1}{3}\)
\(\frac{5x-3}{6}-\frac{7x-1}{4}-\frac{4x+2}{7}+5=0\)
<=> \(\frac{14\left(5x-3\right)-21\left(7x-1\right)-12\left(4x+2\right)+420}{84}=0\)
<=> 70x - 42 - 147x + 21 - 48x -24 + 420 = 0
<=> -125x + 375 = 0
<=> -125x = -375
<=> x = 3
Vậy S = {3}
\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)
<=> \(\frac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\frac{8\left(3x-1\right)}{20}\)
<=> 30x + 15 - 100 - 6x - 4 = 24x - 8
<=> 24x - 24x = -8 + 89
<=> 0x = 81
=> pt vô nghiệm
a) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{4}=\dfrac{5}{2}\\x=-\dfrac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{24}{5};\dfrac{5}{2}\right\}\)
b) \(\left(3.5-7x\right)\left(0.1x+2.3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3.5-7x=0\\0.1x+2.3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3.5}{7}=\dfrac{1}{2}\\x=-\dfrac{2.3}{0.1}=-23\end{matrix}\right.\)
Vậy \(S=\left\{-23;\dfrac{1}{2}\right\}\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a. $3x^2-7x+8 = 0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})+\frac{47}{12}=0$
$\Leftrightarrow 3(x-\frac{7}{6})^2+\frac{47}{12}=0$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{-47}{12}<0$ (vô lý - loại)
$\Rightarrow$ PT vô nghiệm.
b.
$2x^2-6x+1=0$
$\Leftrightarrow 2(x^2-3x+1,5^2)-3,5=0$
$\Leftrightarrow 2(x-1,5)^2=3,5$
$\Leftrightarrow (x-1,5)^2=1,75$
$\Leftrightarrow x-1,5=\pm \sqrt{1,75}$
$\Leftrightarrow x=1,5\pm \sqrt{1,75}$
TH1 : \(1+4x\ge0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x-7x+2=0\)
\(\Leftrightarrow3-3x=0\)
\(\Leftrightarrow x=1\)(TM)
TH2 : \(1+4x\le0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x+7x-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow x=1\)(loại) Bạn thử x = 1 vào 1 + 4x nếu 1 + 4x \(\le\)0 thì lấy còn \(\ge\)0 thì loại
TH3 : \(1+4x\ge0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x+7x-2=0\)
\(\Leftrightarrow11x-1=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(TM)
TH4 : \(1+4x\le0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x-7x+2=0\)
\(\Leftrightarrow1-11x=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(loại)
Vậy \(S=\left\{\frac{1}{11};1\right\}\)
|1+4x| - |7x-2| =0 (*)
ta có: +) 1+4x=0 =>4x =-1 =>x=-1/4
+)7x-2=0 =>7x=2 =>x =7/2
=> ta có bảng sau:
x -1/4 7/2
1+4x - 0 + | +
7x-2 - | - 0 +
TH 1: x <-1/4 => 1+4x <0 =>|1+4x|=-(1+4x)
7x-2 <0 |7x-2|=-(7x-2)
(*) =>-(1+4x)+(7x-2)=0
=>-1-4x+7x-2=0
=>-3+3x=0
=>3x=3
=>x=1 ( không t/m x < -1/4 )
TH 2: -1/4 _< x _< 7/2 => 1+4x >0 =>|1+4x|=1+4x
7x-2 <0 |7x-2|=-(7x-2)
(*) =>1+4x+(7x-2)=0
=>1+4x+7x-2=0
=>11x-1 =0
=>11x=1
=>x=1/11 ( t/m -1/4 _< x <7/2)
TH 3: 7/2 > x =>1+4x >0 => |1+4x|=1+4x
7x-2 >0 |7x-2|=7x-2
(*) => 1+4x-(7x-2)=0
=>1+4x-7x+2=0
=>3-3x=0
=>3x =3
=>x=1 ( t/m 7/2 >x)
từ 3 trường hợp trên =>x { 1/11 ;1}