K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

\(ĐKXĐ:x\ge-1\)

Ta có : \(\sqrt{x+1}=32x^3+48x^2+18x+1\)

\(\Leftrightarrow\sqrt{x+1}-1=32x^3+48x^2+18x\)

\(\Leftrightarrow\frac{\left(x+1\right)-1^2}{\sqrt{x+1}+1}=2x.\left(16x^2+24x+9\right)\)

\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}-2x\left(4x+3\right)^2=0\)

\(\Leftrightarrow x.\left[\frac{1}{\sqrt{x+1}+1}-2.\left(4x+3\right)^2\right]=0\) (*)

Với mọi \(x\inĐKXD\) thì \(2.\left(4x+3\right)^2>\frac{1}{\sqrt{x+1}+1}\) nên từ (*) suy ra :

\(x=0\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=0\)

12 tháng 11 2016

a/ Điều kiện b tự làm nhé

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)

Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành

\(a-b=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)

Tới đây thì đơn giản rồi b làm tiếp nhé

24 tháng 12 2021

\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)

2 tháng 10 2020

ĐK: \(x\ge\frac{1}{3}\)

Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)

\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)

CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)

Pt đã cho có nghiệm \(x=\frac{4}{9}\)

18 tháng 10 2020

phần a đây nhé \(a,\sqrt{4\left(2x-1\right)}-2\sqrt{9\left(2x-1\right)}+2\sqrt{16\left(2x-1\right)}=12\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow\left\{{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

18 tháng 10 2020

câu này sai

a,

ĐK : \(x\ge\frac{-15}{2}\)

Phương trình đã cho tương đương với

\(\sqrt{2x+15}=32x^2+32x-20\)

\(\Leftrightarrow2x+15=\left(32x^2+32x-20\right)^2\)\(\Leftrightarrow1024x^4+2048x^3-256x^2-1282x+385=0\)

Phương trình này có 2 nghiệm  là \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-11}{8}\end{cases}}\) nên dễ dàng có được

⇔ ( 16x2 + 14x − 11 ) ( 64x2 + 72x − 35 ) = 0

Kết hợp với điều kiên bài toán ta có nghiệm của phương trình là \(x=\frac{1}{2};x=\frac{-9-\sqrt{221}}{16}\)

b,\(x^2=\sqrt{2-x}+2\)

ĐK \(x\le2\)

\(PT\Leftrightarrow\sqrt{2-x}=x^2-2\)

\(\Leftrightarrow2-x=\left(x^2-2\right)^2=x^4-4x^2+4\)

\(\Leftrightarrow x^4-4x^2+x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)

\(x^2-x-1>0\)nên

\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}\left(Tm\right)}}\)

23 tháng 9 2017

pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)

đặt\(\sqrt{x+6}=a;x^2+4x=b\)