K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)

11 tháng 8 2016

a) ĐKXĐ : \(x\ge0\)

Ta có : \(\sqrt{3x}-\sqrt{27}+\sqrt{75x}=3\Leftrightarrow\sqrt{x}\left(\sqrt{3}+\sqrt{75}\right)=3+\sqrt{27}\)

\(\Leftrightarrow\sqrt{x}=\frac{3+\sqrt{27}}{\sqrt{3}+\sqrt{75}}=\frac{\sqrt{3}+3}{6}\)

\(\Leftrightarrow x=\frac{\left(3+\sqrt{3}\right)^2}{36}\)

b) ĐKXĐ : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{4x-4}+\sqrt{9x-9}=10\)

\(\Leftrightarrow\sqrt{x-1}-\sqrt{4.\left(x-1\right)}+\sqrt{9.\left(x-1\right)}=10\)

\(\Leftrightarrow\sqrt{x-1}-2\sqrt{x-1}+3\sqrt{x-1}=10\)

\(\Leftrightarrow\sqrt{x-1}=5\Leftrightarrow x=26\) (TMĐK)

c) ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+\sqrt{18x+9}-\sqrt{50x+25}=-3\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{9\left(2x+1\right)}-\sqrt{25\left(2x+1\right)}=-3\)

\(\Leftrightarrow\sqrt{2x+1}+3\sqrt{2x+1}-5\sqrt{2x+1}=-3\)

\(\Leftrightarrow0=-3\) (Vô lí - loại)

Vậy pt vô nghiệm.

 

11 tháng 8 2016

\(\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\) (bình phương 2 vế)

\(\Leftrightarrow x=26\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq 0$

PT $\Leftrightarrow (\sqrt{x}-3)^2=0$

$\Leftrightarrow \sqrt{x}-3=0$

$\Leftrightarrow x=9$ (thỏa mãn)

c) ĐK: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$

$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$

$\Leftrightarrow 3\sqrt{x-3}=7$

$\Leftrightarrow x-3=(\frac{7}{3})^2$

$\Rightarrow x=\frac{76}{9}$

d)

ĐK: $x\geq \frac{-1}{2}$

PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$

$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$

$\Leftrightarrow 3\sqrt{2x+1}=6$

$\Leftrightarrow \sqrt{2x+1}=2$

$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)

23 tháng 10 2020

cảm ơn nha <3

17 tháng 7 2015

b/

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)

\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)

4 tháng 3 2018

hello bạn

\(PT\Leftrightarrow\sqrt{x-4-4\sqrt{x-4}+4}+3=\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+3=\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{x-4}+5=\sqrt{x-4}+1\)

pt vô nghiệm

17 tháng 6 2019

Bạn gì team gà công nghiệp ei, nhầm dấu rồi kìa: mình làm lại nhé:

ĐKXĐ \(x\ge4\)

\(\sqrt{x-4\sqrt{x-4}}+3=\sqrt{x-4}+1.\)

\(\Leftrightarrow\sqrt{\left(x-4\right)-2.\sqrt{x-4}.2+4}=\sqrt{x-4}+1-3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}-2\right)^2}=\sqrt{x-4}-2\)

\(\Leftrightarrow|\sqrt{x-4}-2|=\sqrt{x-4}-2\)

Suy ra : \(\sqrt{x-4}-2\ge0\Leftrightarrow\sqrt{x-4}\ge2\Leftrightarrow x-4\ge4\Leftrightarrow x\ge8.\)

( có chỗ suy ra là kiến thức cơ bản \(|a|=a\Leftrightarrow a\ge0\))

Kết hợp với điều kiện xác định ta có :

Phương trình đã cho có nghiệm với mọi \(x\ge8\)