K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

\(\sqrt{x^2-6x+6}=2x-1\) (1)

\(\Leftrightarrow\) \(\begin{cases}2x-1\ge0\\x^2-6x+6=\left(2x-1\right)^2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x\ge\frac{1}{2}\\3x^2+2x-5=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{2}\\x=1;x=-\frac{5}{3}\end{cases}\) 

\(\Leftrightarrow x=1\)

Vậy phương trình đã cho có nghiệm \(x=1\)

12 tháng 11 2019

a) ĐK: \(\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)

pt \(\Leftrightarrow\)\(x^2-6x+9-4\sqrt{x^2-6x+6}=0\)

\(\Leftrightarrow\)\(a^2-4a+3=0\)\(\left(a=\sqrt{x^2-6x+6}\ge0\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2-6x+6}=1\\\sqrt{x^2-6x+6}=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1hoacx=5\\x=3\pm2\sqrt{3}\end{cases}}\left(nhan\right)\)

b) ĐK.. 

pt \(\Leftrightarrow\)\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|\frac{x-2}{x-1}\right|=-3\left(loai\right)\\\left|\frac{x-2}{x-1}\right|=1\end{cases}}\Leftrightarrow x=\frac{3}{2}\left(nhan\right)\)

15 tháng 12 2016

1) ĐK: \(x\ge\frac{3}{2}\)

pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)

\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)

\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)

\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)

\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)

15 tháng 12 2016

2) ĐK: \(2\le x\le4\)

pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)

\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)

\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)

10 tháng 11 2016

b) X=5

10 tháng 11 2016

Tính kiểu gì vậy.......

26 tháng 7 2019

VT là căn bậc 2 hay 3?

26 tháng 7 2019

VT không có căn VP căn bậc 2

15 tháng 4 2017

ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).

b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.

Điều kiện x ≤ 0. Bình phương tiếp ta được:

x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).

Kết luận: Tập nghiệm S {-1}.

c) ĐKXĐ: x ≥ -2.

=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0

=> x1 =2 – (nhận), x2 = 2 + (nhận).

d) ĐK: x ≥ .

=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)

Đặt \(\sqrt{x^2-5x-6}=a\ge0\)

\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)

b/ ĐKXĐ: ...

\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)

Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)

\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)

c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)

Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)

\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)

NV
23 tháng 10 2019

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)

e/ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)

Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)

f/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)

\(\frac{1}{a}+1+a=3a^2\)

\(\Leftrightarrow3a^3-a^2-a-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)

\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)

NV
2 tháng 10 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a\ge0\\2x+1=b\end{matrix}\right.\) \(\Rightarrow a^2+2b=x^2+6x+5\)

Phương trình trở thành:

\(a^2+2b-4=ab\)

\(\Leftrightarrow a^2-4+2b-ab=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+2\right)-b\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+2-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(1\right)\\a=b-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x+3=4\)

\(\Leftrightarrow x^2+2x-1=0\Rightarrow x=-1\pm\sqrt{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+2x+3}=2x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\x^2+2x+3=\left(2x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\3x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{15}}{3}\\x=\frac{3-\sqrt{15}}{3}\left(l\right)\end{matrix}\right.\)