Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\) \(\left(ĐKXĐ:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x^2-3x+2}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{x^2+2x-3}=0\)
\(\Leftrightarrow\sqrt{\left(x^2-2x\right)-\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x^2-x\right)+\left(3x-3\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x+3}\right)-\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-2=x+3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\0=5\left(VL\right)\end{cases}}\)
Vậy ...
ĐIều kiện x >2/3
\(\Leftrightarrow\frac{x^2+\left(\sqrt{3x-2}\right)^2}{x\sqrt{3x-2}}=2\)
\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2=2x\sqrt{3x-2}\)
\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2-2x\sqrt{3x-2}=0\)
\(\Leftrightarrow\left(x-\sqrt{3x-2}\right)^2=0\)
\(\Leftrightarrow x-\sqrt{3x-2}=0\Leftrightarrow x=\sqrt{3x-2}\)
vì ta bình phương 2 vế ta có:
x2 = 3x-2
,<=> x2-3x+2 = 0
ta có x1= 1 (thỏa mãn) ; x2 = 2 (thỏa mãn)
Vậy:......................................
đk : x >= 0
\(\Leftrightarrow x-2\sqrt{x}-2+\sqrt{3x+2}=0\)
\(\Leftrightarrow x-2-\left(2\sqrt{x}-2\sqrt{2}\right)+\sqrt{3x+2}-2\sqrt{2}=0\)
\(\Leftrightarrow x-2-\frac{4x-8}{2\sqrt{x}+2\sqrt{2}}+\frac{3x+2-8}{\sqrt{3x+2}+2\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[1-\frac{4}{2\sqrt{x}+2\sqrt{2}}+\frac{3}{\sqrt{3x+2}+2\sqrt{2}}\right]=0\Leftrightarrow x=2\)(tmđk)