K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

đk : x >= 0 

\(\Leftrightarrow x-2\sqrt{x}-2+\sqrt{3x+2}=0\)

\(\Leftrightarrow x-2-\left(2\sqrt{x}-2\sqrt{2}\right)+\sqrt{3x+2}-2\sqrt{2}=0\)

\(\Leftrightarrow x-2-\frac{4x-8}{2\sqrt{x}+2\sqrt{2}}+\frac{3x+2-8}{\sqrt{3x+2}+2\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[1-\frac{4}{2\sqrt{x}+2\sqrt{2}}+\frac{3}{\sqrt{3x+2}+2\sqrt{2}}\right]=0\Leftrightarrow x=2\)(tmđk)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

23 tháng 12 2018

nhân với nhau lên loại bỏ căn bậc 2 bằng cách bình phương

VT và VP lên

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

4 tháng 1 2016

54 

tick mk nha

16 tháng 10 2018

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\) \(\left(ĐKXĐ:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x^2-3x+2}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{x^2+2x-3}=0\)

\(\Leftrightarrow\sqrt{\left(x^2-2x\right)-\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x^2-x\right)+\left(3x-3\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x+3}\right)-\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-2=x+3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\0=5\left(VL\right)\end{cases}}\)

Vậy ...

16 tháng 10 2018

Cảm ơn bạn mk cũng đã tính bài này luôn r

7 tháng 12 2017

ĐIều kiện x >2/3

\(\Leftrightarrow\frac{x^2+\left(\sqrt{3x-2}\right)^2}{x\sqrt{3x-2}}=2\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2=2x\sqrt{3x-2}\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2-2x\sqrt{3x-2}=0\)

\(\Leftrightarrow\left(x-\sqrt{3x-2}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{3x-2}=0\Leftrightarrow x=\sqrt{3x-2}\)

vì ta bình phương 2 vế ta có:

x= 3x-2

,<=> x2-3x+2 = 0

ta có x1= 1 (thỏa mãn) ; x2 = 2 (thỏa mãn)

Vậy:......................................

24 tháng 10 2017

Áp dụng bđt Côsi