Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)
\(ĐK:x,y>0\)
\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\)
Vì x, y > 0 nên \(x+2y+\frac{1}{y\sqrt{x}}>0\)suy ra x - y = 0 hay x = y
Thay x = y vào (2), ta được: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
\(\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow\sqrt{x+3}.\sqrt{x}-\sqrt{x+3}-\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x+3}-1\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=1\left(tmđk\right)\end{cases}}\Rightarrow x=y=1\)
Vậy hệ có một nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)
ĐK: \(\hept{\begin{cases}x>0\\y>0\end{cases}}\)và \(\hept{\begin{cases}x+3\ge0\\x^2+3x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\y>0\end{cases}}}\)
\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x+y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\Leftrightarrow x=y\)do \(x+2y+\frac{1}{y\sqrt{x}}>0\forall x,y>0\)
Thay y=x vào pt (2) ta được
\(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)
\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\Leftrightarrow\sqrt{x+3}\cdot\sqrt{x}-\sqrt{x+3}-\sqrt{x+1}=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-1\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=1\left(tm\right)\end{cases}\Rightarrow}x=y=1}\)
Vậy hệ có nghiệm duy nhất (x;y)=(1;1)