Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=-3x\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(x^3+27\right)=-3x^2-6x\)
\(\Leftrightarrow-3x^2+3x-28=-3x^2-6x\)
\(\Leftrightarrow3x-28=-6x\Leftrightarrow9x=28\)
\(\Leftrightarrow x=\frac{28}{9}\)
Vậy tập nghiệm S\(=\left\{\frac{28}{9}\right\}\)
Đáp án:
(x−1)3−(x+3)(x2−3x+9)=−3x(x+2)
⇒x3−3x2+3x−1−(x3+33)=−3x2−6x
⇒x3−3x2+3x−1−x3−27+3x2+6x=0
⇒9x−28=0
⇒x=\(\frac{28}{9}\)
Vậyx=\(\frac{28}{9}\)
#Châu's ngốc
giải phương trình bất nhất (3x-1)(x+3)= (2-x)(5-3x) các bạn ghi các bước giải ra giúp mik luôn nha !
(3x-1)(x+3)= (2-x)(5-3x)
\(\Leftrightarrow3x^2+9x-x-3=10-6x-5x+3x^2\)
\(\Leftrightarrow3x^2+8x-3-10+11x-3x^2=0\)
\(\Leftrightarrow19x-13=0\)
\(\Leftrightarrow x=\frac{13}{19}\)
Vậy \(x\in\left\{\frac{13}{19}\right\}\)
a/ x.(x + 1)(x2 + x + 1) = 42
=> (x2 + x)(x2 + x + 1) = 42
Đặt a = x2 + x ta đc:
a.(a + 1) = 42
=> a2 + a - 42 = 0
=> (a - 6)(a + 7) = 0
=> a = 6 hoặc a = -7
Với a = 6 => x2 + x = 6 => x2 + x - 6 = 0 => (x - 2)(x + 3) = 0 => x = 2 hoặc x = -3
Với a = -7 => x2 + x = -7 => x2 + x + 7 = 0 , mà x2 + x + 7 > 0 => pt vô nghiệm
Vậy x = 2 , x = -3
b/ (3x - 1)2 - 5(2x + 1)2 + (6x - 3)(2x + 1) = (x - 1)2
=> 9x2 - 6x + 1 - 5.(4x2 + 4x + 1) + (12x2 - 3) = x2 - 2x + 1
=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x - 1 = 0
=> - 24x - 8 = 0
=> -24x = 8
=> x = -1/3
Vậy x = -1/3
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
a) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)
b) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)
\(\Rightarrow x+1=0\left(2x^2+x+5\ne0\forall x\right)\)
<=> x=-1
Vậy x=-1
3(x-1)^2-3x(x-5)=2
<=>3(x^2-2x+1)-3x^2+15x-2=0
<=>3x^2-6x+3-3x^2+15x-2=0
<=>9x+1=0
<=>9x=-1
<=>x=-1/9
<=>3(x^2-2x+1)-3x^2+15x-2=0
<=>3x^2-6x+3-3x^2+15x-2=0
<=>9x+1=0
<=>9x=-1
<=>x=-1/9