Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng bất đẳng thức:
\(\frac{1}{2}< x< \frac{7}{4}x>3\)
Kí hiệu khoảng:
\(\left(\frac{1}{2},\frac{7}{4}\right)U\left(3,\infty\right)\)
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
a/ \(\Leftrightarrow\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\le0\)
\(\Leftrightarrow\frac{5\left(-3x+4\right)}{\left(x-5\right)\left(x+5\right)}\le0\) \(\Rightarrow\left[{}\begin{matrix}-5< x\le\frac{4}{3}\\x>5\end{matrix}\right.\)
b/ Không rõ đề
c/
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\ge-1\) hai vế ko âm, bình phương:
\(\Leftrightarrow\left(x+1\right)^2>\frac{\left(x-3\right)^2}{4}\)
\(\Leftrightarrow\left(2x+2\right)^2-\left(x-3\right)^2>0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-1\right)>0\Rightarrow\left[{}\begin{matrix}x< -5\\x>\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow x>\frac{1}{3}\)
1, \(\frac{3x-4}{x-2}>1\\ \frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}>1\\ 3+\frac{2}{x-2}>1\\ \frac{2}{x-2}>-2\\ \frac{1}{x-2}>-1\)
\(x-2< -1\\ x< 1\)
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\left(x+2\right)\left(2-x\right)+3\left(x-5\right)\left(2-x\right)=6\left(x-5\right)\)
\(\Leftrightarrow4-x^2-3x^2+21x-30=6x-30\)
\(\Leftrightarrow-4x^2+15x+4=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{4}\end{matrix}\right.\)