Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x+8}\ge3\left(\sqrt{x+3}+\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x+8}\ge\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow x+8\ge2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x\ge2\sqrt{x^2+3x}\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\le5\) hai vế ko âm, bình phương:
\(x^2-10x+25\ge4x^2+12x\)
\(\Leftrightarrow3x^2+22x-25\le0\Rightarrow-\frac{25}{3}\le x\le1\)
Vậy nghiệm của BPT đã cho là \(0\le x\le1\)
b/ ĐKXĐ: \(x>0\)
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)< 2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\Rightarrow x+\frac{1}{4x}=t^2-1\)
BPT trở thành:
\(5t< 2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2>0\Rightarrow\left[{}\begin{matrix}t>2\\t< \frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0\le x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)