K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

pt<=>1-2sin2x.cos2x=cos4x

<=>1-\(\dfrac{sin^22x}{2}\)=1-2sin22x

<=>3sin22x=0

<=>x=\(\dfrac{k\Pi}{2}\)

NV
29 tháng 9 2020

a/ \(m=0\) pt vô nghiêm

Với \(m\ne0\Rightarrow cosx=\frac{m+1}{m}\)

\(-1\le cosx\le1\Rightarrow-1\le\frac{m+1}{m}\le1\)

\(\Rightarrow m\le-\frac{1}{2}\)

b/ \(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-\left(1-2sin^22x\right)=m\)

\(\Leftrightarrow\frac{5}{4}sin^22x=m\)

Do \(0\le\frac{5}{4}sin^22x\le\frac{5}{4}\Rightarrow0\le m\le\frac{5}{4}\)

c/ \(\Leftrightarrow1-\frac{3}{4}sin^22x=m\left(1-\frac{1}{4}sin^22x\right)\)

\(\Leftrightarrow\left(m-3\right)sin^22x=4m-4\)

- Với \(m=3\) pt vô nghiệm

- Với \(m\ne3\Rightarrow sin^22x=\frac{4m-4}{m-3}\)

Do \(0\le sin^22x\le1\Rightarrow0\le\frac{4m-4}{m-3}\le1\)

\(\Rightarrow\frac{1}{3}\le m\le1\)

23 tháng 1 2018

\(\sin^4x+\cos^4x=\dfrac{\cos4x+3}{4}\)

\(\Leftrightarrow\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=\dfrac{\cos4x+3}{4}\)

\(\Leftrightarrow\dfrac{1-\cos4x}{4}=2\sin^2x.\cos^2x\)

\(\Leftrightarrow\dfrac{1-\cos4x}{2}=\left(2\sin x.\cos x\right)^2\)

\(\Leftrightarrow2\sin^22x=\sin^22x\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=0\\\sin2x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\kappa\pi}{2}\\x=\dfrac{\pi}{12}+\kappa\pi\left(\kappa\in Z\right)\\x=\dfrac{5\pi}{12}+\kappa\pi\end{matrix}\right.\)

26 tháng 1 2018

còn cách giải nào không bạn

1 tháng 8 2020

hk hỉu ngay dấu tđ thứ 1 mong giải thích

NV
1 tháng 8 2020

Nhân 2 vế với \(sin4x\) sau đó tách:

\(\frac{sin4x}{cosx}+\frac{sin4x}{sin2x}=\frac{2sin2x.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}=\frac{4sinx.cosx.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}\)

Rồi rút gọn

29 tháng 7 2020

\(cos^2x-sin^2x=sin3x+cos4x\\ \Leftrightarrow cos2x=sin3x+cos4x\\ \Leftrightarrow sin3x+2sin3x\cdot sinx=0\\ \\ \Leftrightarrow\left[{}\begin{matrix}sin3x=0=sin0\\sinx=-\frac{1}{2}=sin\frac{-\pi}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{a\pi}{3}\\x=\frac{-\pi}{6}+b2\pi\\x=\frac{7\pi}{6}+c2\pi\end{matrix}\right.\)

NV
10 tháng 2 2020

\(sin^6x+cos^6x=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}sin^22x\)

Phương trình đã cho tương đương:

\(1-\frac{3}{4}sin^22x+1-2sin^22x=2\)

\(\Leftrightarrow sin^22x=0\Leftrightarrow sin2x=0\)