\(5x^4+10x^2+2y^6+4y^3-6=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2021

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)

\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\)

19 tháng 8 2021

Vì sao 13/5 < 4 ạ?

30 tháng 12 2018

a) \(x^3-2x^2-5x+6=0\)

\(x^3-x^2-x^2+x-6x+6=0\)

\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)

30 tháng 12 2018

\(a,x^3-2x^2-5x+6=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)

Vậy \(x\in\left\{-2;1;3\right\}\)

P/S: (h) là hoặc nhé

24 tháng 6 2019

\(2x^4-2x^2y+y^2-64=0.\)

\(x^4+x^4-2x^2y+y^2-64=0.\)

\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4=64.\)

Có \(\left(x^2-y\right)^2\ge0\)

mafk \(\left(x^2-y\right)^2+x^4=64.\)

\(\Rightarrow x^4\le64.\)

\(\Rightarrow x^2\le8\)

Từ đó xét tiếp 

5 tháng 11 2019

Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)

<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương

=>  \(x^2+1=1\)

và  \(y^3+1=2\)

Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.

7 tháng 1 2018

VT sẽ được phân tích thành 

\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)

Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên 

^_^

7 tháng 1 2018

thanks chị nhiều ^_^

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

19 tháng 3 2020

a/\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{x-1}+\frac{x^2-8x+4}{2x+1}=0\)

\(\Leftrightarrow x-4+\frac{x^2-8x+4}{2x+1}=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)+x^2-8x+4=0\)

\(\Leftrightarrow3x^2-15x=0\Leftrightarrow x\left(x-5\right)=0.....\)Vậy x=0, x=5