Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos2x-\sin x+\cos x=0\Leftrightarrow\cos^2x-\sin^2x+\left(\cos x-\sin x\right)=0\)
\(\Leftrightarrow\left(\cos x-\sin x\right)\left(\cos x+\sin x+1\right)=0\)
\(\Leftrightarrow\begin{cases}\cos x-\sin x=0\\\cos x+\sin x+1=0\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)=0\\\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)=-1\end{cases}\)
\(\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=\frac{\pi}{2}+k\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x-\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\pi+k2\pi\\x=-\frac{\pi}{2}+k2\pi\end{cases}\)
cos2x.cos2x=0
<=>\(\left[\begin{array}{nghiempt}cos^2x=0\\cos2x=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=+-\frac{pi}{2}+kpi\\2x=\frac{pi}{2}+kpi\end{array}\right.\),
<=>\(\left[\begin{array}{nghiempt}x=+-\frac{pi}{2}+kpi\\x=\frac{pi}{4}+\frac{kpi}{2}\end{array}\right.\)
a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)
\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)
\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)
\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)
\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)
\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)
\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)
\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)
b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)
\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)
\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)
\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)
\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)
e/
\(\Leftrightarrow3\left(1-cos6x\right)-\left(2cos^26x-1\right)=4\)
\(\Leftrightarrow-2cos^26x-3cos6x=0\)
\(\Leftrightarrow cos6x\left(2cos6x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos6x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow6x=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
d/
\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)
\(\Leftrightarrow2cos^22x-3cos2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)
Nghiệm xấu quá :(