K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
8 tháng 8 2020

3.

ĐKXĐ: ...

\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)

\(\Leftrightarrow tan^22x+tan^22x=8\)

\(\Leftrightarrow tan^22x=4\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)

Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)

NV
8 tháng 8 2020

1. ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)

\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)

\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)

2.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)

\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)

\(\Leftrightarrow2x+3=x+1+k\pi\)

\(\Rightarrow x=-2+k\pi\)

NV
22 tháng 8 2020

5.

\(\Leftrightarrow sin\left(2cosx\right)=1\)

\(\Leftrightarrow2cosx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow cosx=\frac{\pi}{4}+k\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\frac{\pi}{4}+k\pi\le1\)

\(k\in Z\Rightarrow k=0\)

\(\Rightarrow cosx=\frac{\pi}{4}\)

\(\Leftrightarrow x=\pm arccos\left(\frac{\pi}{4}\right)+k2\pi\)

NV
22 tháng 8 2020

3.

\(\Leftrightarrow sin2x+1=2\left(\frac{1-cos2x}{2}\right)\)

\(\Leftrightarrow sin2x+cos2x=0\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow2x+\frac{\pi}{4}=k\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

4. ĐKXĐ; ...

\(\Leftrightarrow\frac{sinx.cos2x}{cosx.sin2x}+1=0\)

\(\Leftrightarrow sinx.cos2x+cosx.sin2x=0\)

\(\Leftrightarrow sin3x=0\)

\(\Leftrightarrow3sinx-4sin^3x=0\)

\(\Leftrightarrow3-4sin^2x=0\)

\(\Leftrightarrow3-2\left(1-cos2x\right)=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
7 tháng 10 2020

a. ĐKXĐ: ...

\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)

NV
7 tháng 10 2020

b.

\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow4cos^32x-2cos2x-1=0\)

Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề

c. ĐKXĐ: ...

\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)