Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x\right)^2=12+4x-4x^2\)
\(\Rightarrow\left(x^2-x\right)^2+4x^2-4x-12=0\)
\(\Rightarrow x^4-2x^3+5x^2-4x-12=0\)
\(\Rightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+6\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{cases}tm}\)
(x2-x)2=12+4x-4x2
=>(x2-x)2+4x2-4x-12=0
=>x4-2x3+5x2-4x-12=0
=>(x-2)(x+1)(x2-x+6)=0
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}\left(tm\right)}\)
2/ (x2 + x + 1) (x2+ x + 2) = 12
đặt x2 + x = t
thay vào đc:
(t + 1) (t + 2) = 12
<=> t2 + 3t + 2 = 12
<=> t2 + 3t - 10 = 0
<=> t2 - 2t + 5t - 10 = 0
<=> t (t - 2) + 5 (t - 2) = 0
<=> (t + 5) (t - 2) = 0
=> {
t=−5 |
t=2 |
thay t đc:
*) x2 + x = -5 => x loại
*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2)
=> x = 1 hoặc x = - 2
S = {-2 ; 1}
3/ (x2 - 6x + 4)2 - 15(x2 - 6x + 10) = 1
đặt x2 - 6x + 4 = t
có: t2 - 15(t + 6) = 1
<=> t2 - 15t - 91 = 0
Câu 2 đặt ẩn phụ là x^2+x+2= a là đc
Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc
a) Đề đúng: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=y\)
BT = \(y^2+4y-12\)
\(=\left(y+2\right)^2-4^2\)
\(=\left(y-2\right)\left(y+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+3\right)\)
b) Đặt \(x^2+x+1=y\)
=> BT = \(y\left(y+1\right)-12\)
\(=y^2+y-12\)
\(=\left(y-3\right)\left(y+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
đặt x^2 +x+2 =t>0 <=> x^2 +x =t-2
<=>(t-2)^2 +4(t-2) -12 =0
<=>(t-2)(t-2+4)-12 =0
<=>t^2-4 -12 =0
<=>t^2 -16 =0 => t =4
x^2 +x =2 <=>(x-1)(x+2) =0
x=1 ; x =-2
Đặt \(x^2+x=t\)
\(\Rightarrow t^2+2t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
2/ (x2 + x + 1) (x2+ x + 2) = 12
đặt x2 + x = t
thay vào đc:
(t + 1) (t + 2) = 12
<=> t2 + 3t + 2 = 12
<=> t2 + 3t - 10 = 0
<=> t2 - 2t + 5t - 10 = 0
<=> t (t - 2) + 5 (t - 2) = 0
<=> (t + 5) (t - 2) = 0
=> \(\hept{\begin{cases}t=-5\\t=2\end{cases}}\)
thay t đc:
*) x2 + x = -5 => x loại
*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2)
=> x = 1 hoặc x = - 2
S = {-2 ; 1}
3/ (x2 - 6x + 4)2 - 15(x2 - 6x + 10) = 1
đặt x2 - 6x + 4 = t
có: t2 - 15(t + 6) = 1
<=> t2 - 15t - 91 = 0
....
....
số xấu, xem lại đề ~0~
câu 2, a=x2 +x+1 . PHƯƠNG TRÌNH TRỞ THÀNH a x (a +1)=12. giải binh thương
câu 3, tương tự a= x2 - 6x + 4 .PHƯƠNG TRÌNH TRỞ THÀNH a2 - 15x(a+6)=1. giải bình thương
đặt (x-2)^2 =t=> t>=0< => x^2 -4x =t-4
<=>[t -4)^2 +2t =43
đặt t-4 =y => y>=-4
<=> y^2 +2y =35
đặt y+1 =z => z>=-3
<=> z^2=36 => z=6 => y=5 =>t=9 =>|x-2| =3 => x=(-1;5)