Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
\(\left(3x-7\right)\left(x-2\right)^2\left(3x-5\right)=8\)
\(\Leftrightarrow\left(3x-7\right)\left[3\left(x-2\right)\right]^2\left(3x-5\right)=8.3^2\)
\(\Leftrightarrow\left(3x-7\right)\left(3x-6\right)^2\left(3x-5\right)=72\)(1)
Đặt 3x - 6 = t
Khi đó (1) trở thành: \(\left(t-1\right)t^2\left(t+1\right)=72\)
\(\Leftrightarrow t^2\left(t^2-1\right)=72\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
\(\Leftrightarrow t^2-9=0\left(t^2+8>0\right)\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=3\\3x-6=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Tập nghiệm của phương trình đã cho là: \(S=\left\{3;1\right\}\)
â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)
\(5-x=2-3x\)
\(2x=-3\)
\(x=\frac{-3}{2}\)
Vậy ......
b) \(25-x^2=4x\left(5+x\right)\)
\(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\)
\(5-x=4x\)
\(5x=5\)
x=1
Vậy......
a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)
<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)
<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)
<=> \(\left(2+3x\right)\left(2x+3\right)=0\)
<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)
b) \(25-x^2=4x\left(5+x\right)\)
<=> \(25-x^2-4x\left(5+x\right)=0\)
<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)
<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)
<=> \(\left(5+x\right)\left(5-5x\right)=0\)
<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
\(\left(3x-2\right)\left(3x+8\right)\left(x+1\right)^2+16=0\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(x^2+2x+1\right)+16=0\)
\(\Leftrightarrow\left[9\left(x^2+2x+1\right)-25\right]\left(x^2+2x+1\right)+16=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\left(9a-25\right)a+16=0\)
\(\Leftrightarrow9a^2-25a+16=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{16}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=1\\x^2+2x+1=\frac{16}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=\left(\frac{4}{3}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=\frac{1}{3}\\x=-\frac{7}{3}\end{matrix}\right.\)