K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

\(2x=7-\dfrac{5}{x}\)đk x khác 0 

\(2x^2-7x+5=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Leftrightarrow x=1;x=\dfrac{5}{2}\left(tm\right)\)

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

4 tháng 11 2019

ĐKXĐ: ....

PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)

Dễ thấy cái ngoặc to >0. Do đó x = y.

Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)

Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D

8 tháng 8 2017

\(A+5=x^2+4+y^2+1+\frac{1}{x}+\frac{1}{x+y}=4x+2y+...=\frac{x+y}{9}+\frac{1}{x+y}+\frac{1}{x}+\frac{x}{4}+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x\ge\frac{65}{6}=>A\ge\frac{35}{6}\\ .\)Bài bất :)

8 tháng 8 2017

2/ \(\hept{\begin{cases}\frac{xy}{2}+\frac{5}{2x+y-xy}=5\\2x+y+\frac{10}{xy}=4+xy\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{xy}{2}=a\\2x+y-xy=b\end{cases}}\)

Thì ta có hệ:

\(\hept{\begin{cases}a+\frac{5}{b}=5\\b+\frac{5}{a}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=5-\frac{5}{b}\left(1\right)\\b+\frac{5}{5-\frac{5}{b}}=4\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow b^2-4b+4=0\)

\(\Leftrightarrow b=2\)

\(\Rightarrow a=\frac{5}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{xy}{2}=\frac{5}{2}\\2x+y-xy=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=5\\2x+y=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=5\end{cases}or\orbr{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}}\)

21 tháng 1 2018

mình chịu lun

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)