Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
=> A < 1 - \(\frac{1}{99}\)= 98/99 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)< 1
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{99^2}< \frac{1}{98.99}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow A< 1-\frac{1}{99}\)
\(\Rightarrow A< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=\(1-\frac{1}{101}=\frac{100}{101}\)
A=1/1*3+1/3*5+1/5*7+.....+1/99*101
A=1/3*(1-1/3+1/3-1/5+1/5-1/7+.......+1/99-1/101)
A=1/3*(1-1/101)
A=1/3*100/101
A=300/301
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+...+\frac{9997}{9999}=1-\frac{2}{3}+1-\frac{2}{15}+1-\frac{2}{35}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
thank you bạn nhé mình sẽ k cho bạn