Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
Đặt x+y = S, xy = P,ta có hệ
\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)
\(S^2-S+4>0\)
=> Hệ phương trình vô nghiệm
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
a/ \(\left\{{}\begin{matrix}x+2y=4\\x^2+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(4-2y\right)^2+4y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\4y^2-12y+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(y-1\right)\left(y-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left[{}\begin{matrix}y-1=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(2;1\right)\) hoặc \(\left(x;y\right)=\left(0;2\right)\)