K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2020

b/ \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-2x^2y^2=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y^2=a>0\\xy=b\end{matrix}\right.\) với \(a\ge2b\) hệ trở thành:

\(\left\{{}\begin{matrix}a^2-2b^2=97\\ab=78\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2b^2=97\\b=\frac{78}{a}\end{matrix}\right.\)

\(\Rightarrow a^2-2\left(\frac{78}{a}\right)^2=97\)

\(\Leftrightarrow a^4-97a^2-12168=0\Rightarrow\left[{}\begin{matrix}a^2=169\\a^2=-72\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=13\Rightarrow b=6\\a=-13< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\xy=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\y=\frac{6}{x}\end{matrix}\right.\)

\(\Rightarrow x^2+\frac{36}{x^2}=13\Leftrightarrow x^4-13x^2+36=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=2\\x=-3\Rightarrow y=-2\\x=2\Rightarrow y=3\\x=-2\Rightarrow y=-3\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ \(\left\{{}\begin{matrix}xy+1+x+y=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm:

\(t^2-10t+1=0\) \(\Rightarrow\left[{}\begin{matrix}t=5+2\sqrt{6}\\t=5-2\sqrt{6}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=5+2\sqrt{6}\\xy=4-2\sqrt{6}\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-\left(5+2\sqrt{6}\right)t+4-2\sqrt{6}=0\) (bấm máy, số xấu quá)

TH2: \(\left\{{}\begin{matrix}x+y=5-2\sqrt{6}\\xy=4+2\sqrt{6}\end{matrix}\right.\)

Ta có \(\left(5-2\sqrt{6}\right)^2-4\left(4+2\sqrt{6}\right)=33-28\sqrt{6}< 0\) nên vô nghiệm

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

23 tháng 7 2019

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Đặt \(x^2+y^2=a,xy=b\) $(1)$

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} (a+2b)^2=6b^2+3\\ ab=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+4ab=2b^2+3\\ ab=-1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2=2b^2+7\\ ab=-1\end{matrix}\right.\). Thay \(b=\frac{-1}{a}\)

\(\Rightarrow a^2=\frac{2}{a^2}+7\Rightarrow a=\sqrt{\frac{7+\sqrt{57}}{2}}\) (do $a\geq 0$) \(\Rightarrow b=\frac{7-\sqrt{57}}{4}\sqrt{\frac{7+\sqrt{57}}{2}}\)

Thay vào $(1)$ suy ra HPT có nghiệm là:

\((x,y)\approx (0,228;-1,626),(-0,228;1,626),(-1,626;0,228),(1,626;-0,228)\)

P/s: Vẫn giải được nhưng số quá xấu. Có lẽ do bạn viết nhầm đề. Nhưng trên cơ bản cách giải vẫn như vậy.

31 tháng 1 2017

Nguyễn Huy Thắng Akai Haruma Hoàng Thị Ngọc Anh Trần Việt Linh

Hoàng Lê Bảo Ngọc Hung nguyen Trương Hồng Hạnh Võ Đông Anh Tuấn .........................................................