Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
ĐKXĐ: ...
Nhận thấy \(x=0;y=0\) ko phải nghiệm của hệ
\(\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{x+1}{y}\right)\left(\frac{y+1}{x}\right)=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{x}{y+1}=a\\\frac{y}{x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\\frac{1}{a}.\frac{1}{b}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\)
Hệ đơn giản rồi đấy, chắc bạn tự làm tiếp được
\(\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=1\\ab=\frac{1}{4}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a+b=1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=\frac{1}{2}\) (sử dụng Viet đảo hoặc phép thế \(a\left(1-a\right)=\frac{1}{4}\) đưa về pt bậc 2 bình thường)
TH2: \(\left\{{}\begin{matrix}a+b=-1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=-\frac{1}{2}\)
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)
\(ĐK:x>-1;y\ge1\)
Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)
Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)
Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)
hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)
Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)
Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)
\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)
\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)
Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)
\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)
Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)
+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)
+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)
Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)
\(\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2.\frac{x^2+1}{y}=7\end{matrix}\right.\)
ĐKXĐ: \(y\ne0\)
Đặt \(\frac{x^2+1}{y}=a,x+y=b\)
Ta có hệ phương trình: \(\left\{{}\begin{matrix}a+b=4\\b^2-2a=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2-2a=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2-2\left(4-b\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2+2b-8=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=4-b\left(1\right)\\b^2+2b-15=0\left(2\right)\end{matrix}\right.\)
Giải phương trình (2): \(b^2+2b-15=0\)
Ta có: \(\Delta'=1^2-1. \left(-15\right)=16\)
\(\sqrt{\Delta'}=\sqrt{16}=4\)
Vì \(\Delta'>0\Rightarrow\) Phương trình có 2 nghiệm phân biệt: \(b_1=\frac{-1-4}{1}=-5\)
\(b_2=\frac{-1+4}{1}=3\)
Với b = -5 thay vào phương trình (1) ta có:
a = 4 - b = 4 - (-5) = 9
Với b = 3 thay vào phương trình (1) ta có:
a = 4 - b = 4 - 3 = 1
Khi đó:
TH1: \(\left\{{}\begin{matrix}\frac{x^2+1}{y}=9\\x+y=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=9y\\x=-5-y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(-5-y\right)^2+1=9y\\x=-5-y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[-\left(y+5\right)\right]^2+1=9y\\x=-5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2+10y+5+1=9y\\x=-5-y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2+y+6=0\left(3\right)\\x=-5-y\end{matrix}\right.\)
Ta có:
\(y^2+y+6=\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{23}{4}\\ =\left(y+\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}>0\forall y\)
\(\Rightarrow\) Phương trình (3) không xảy ra.
\(\Rightarrow\) Không có giá trị nào của x, y thỏa mãn bài ra.
TH2: \(\left\{{}\begin{matrix}\frac{x^2+1}{y}=1\\x+y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=y\\x=3-y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-y\right)^2+1=y\\x=3-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9-6y+y^2+1=y\\x=3-y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-7y+10=0\left(4\right)\\x=3-y\left(5\right)\end{matrix}\right.\)
Giải phương trình (4): \(y^2-7y+10=0\)
Ta có: \(\Delta=\left(-7\right)^2-4.1.10=9\)
\(\sqrt{\Delta'}=\sqrt{9}=3\)
Vì \(\Delta'>0\Rightarrow\) Phương trình có 2 nghiệm phân biệt: \(y_1=\frac{7-3}{2.1}=2\)
\(y_2=\frac{7+3}{2.1}=5\)
Với y = 2 thay vào phương trình (1) ta có:
x = 3 - y = 3 - 2 = 1
Với y = 5 thay vào phương trình (1) ta có:
x = 3 - y = 3 - 5 = -2
Vậy hệ phương trình có nghiệm: (x;y) \(\in\) {(1;2),(-2;5)}
Pt (1) có: \(\left|y+\frac{1}{x}\right|+\left|\frac{13}{6}+x-y\right|\ge\left|\frac{13}{6}+\frac{1}{x}+x\right|\)
=> \(\frac{13}{6}+x+\frac{1}{x}\ge\left|\frac{13}{6}+x+\frac{1}{x}\right|\)
Dấu "=" xảy ra <=> \(\frac{13}{6}+x+\frac{1}{x}=0\)
<=> \(6x^2+13x+6=0\) <=>\(\left(3x+2\right)\left(2x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{3}{2}\end{matrix}\right.\)
Tại \(x=-\frac{2}{3}\) thay vào pt (2) => \(y^2=\frac{9}{4}\) =>\(\left[{}\begin{matrix}y=\frac{3}{2}\left(tm\right)\\y=-\frac{3}{2}\left(ktm\right)\end{matrix}\right.\)
Tại \(x=-\frac{3}{2}\) thay vào (2) => \(y^2=\frac{4}{9}\) => \(\left[{}\begin{matrix}y=\frac{2}{3}\left(ktm\right)\\y=-\frac{2}{3}\left(tm\right)\end{matrix}\right.\)
Vậy hpt có 2 ngiệm \(\left(-\frac{2}{3};\frac{3}{2}\right),\left(\frac{-3}{2},\frac{-2}{3}\right)\).
\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\Leftrightarrow\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2=\frac{1}{2}+\frac{2xy}{xy+x+y+1}\)
\(\Leftrightarrow\left(\frac{x^2+x+y^2+y}{xy+x+y+1}\right)^2=\frac{1}{2}+\frac{2xy}{4xy}\)
\(\Leftrightarrow\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)}{4xy}\right)^2=1\)
\(\Leftrightarrow\left(\frac{\left(3xy-1\right)^2+xy-1}{4xy}\right)^2=1\)
Đặt s=x+y;p=xy (s2\(\ge\)4p)
Suy ra: \(\left(\frac{\left(3p-1\right)^2+p-1}{4p}\right)^2=1\)
=>\(\frac{9p^2-5p}{4p}=1\)hoặc \(\frac{9p^2-5p}{4p}=-1\)
<=>p=1 hoặc p=1/9
Với p=1 thì: 3=s+1=>s=2 (thỏa dk)
=>nghiệm của hpt là nghiệm của pt: X2-2X+1=0
=>x=1
Vậy hpt có 1 nghiệm là: (1;1)
Với p=1/9=>s=-2/3 (thỏa dk)
Giải như trên òi kết luận
bài đó làm rùi nhưng quên rùi